Back to Search Start Over

Fast reactions of hydroxycarbenes: tunneling effect versus bimolecular processes

Authors :
Nina P. Gritsan
Saartje Swinnen
Minh Tho Nguyen
Vitaly G. Kiselev
Vinh Son Nguyen
Source :
The journal of physical chemistry. A. 114(17)
Publication Year :
2010

Abstract

Different uni- and bimolecular reactions of hydroxymethylene, an important intermediate in the photochemistry of formaldehyde, as well as its halogenated derivatives (XCOH, X = H, F, Cl, Br), have been considered using high-level CCSD(T)/CBS quantum chemical methods. The Wentzel-Kramers-Brillouin (WKB) and Eckart approximations were applied to estimate the tunneling rate constant of isomerization of trans-HCOH to H(2)CO, and the WKB procedure was found to perform better in this case. In agreement with recent calculations and experimental observations [Schreiner et al., Nature 2008, 453, 906], the half-life of HCOH at the low temperature limit in the absence of bimolecular processes was found to be very long (approximately 2.1 h). The corresponding half-life at room temperature was also noticeable (approximately 35 min). Bimolecular reactions of trans-hydroxymethylene with parent formaldehyde yield primarily more thermodynamically favorable glycolaldehyde via the specific mechanism involving 5-center transition state. The most preferable reaction of cis-hydroxymethylene with formaldehyde yields carbon monoxide and methanol. Due to very low activation barriers, both processes occur with nearly a collision rate. If the concentration of HCOH (and its halogenated analogues XCOH as well) is high enough, the bimolecular reactions of this species with itself become important, and H(2)CO (or X(H)CO) is then formed with a collision rate. The singlet-triplet energy separation of trans-HCOH is confirmed to be approximately -25 kcal/mol.

Details

ISSN :
15205215
Volume :
114
Issue :
17
Database :
OpenAIRE
Journal :
The journal of physical chemistry. A
Accession number :
edsair.doi.dedup.....1efc2df2317c0a1c8b321675a174b88d