Back to Search Start Over

Pad\'e approximants and analytic continuation of Euclidean Phi-derivable approximations

Authors :
Gergely Markó
Urko Reinosa
Zsolt Szép
Centre de Physique Théorique [Palaiseau] ( CPHT )
École polytechnique ( X ) -Centre National de la Recherche Scientifique ( CNRS )
Centre de Physique Théorique [Palaiseau] (CPHT)
École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS)
Centre National de la Recherche Scientifique (CNRS)-École polytechnique (X)
Source :
Phys.Rev.D, Phys.Rev.D, 2017, 96 (3), pp.036002. 〈10.1103/PhysRevD.96.036002〉, Phys.Rev.D, 2017, 96 (3), pp.036002. ⟨10.1103/PhysRevD.96.036002⟩, Physical Review D, Physical Review D, American Physical Society, 2017, 96 (3), pp.036002. ⟨10.1103/PhysRevD.96.036002⟩
Publication Year :
2017

Abstract

We investigate the Pad\'e approximation method for the analytic continuation of numerical data and its ability to access, from the Euclidean propagator, both the spectral function and part of the physical information hidden in the second Riemann sheet. We test this method using various benchmarks at zero temperature: a simple perturbative approximation as well as the two-loop Phi-derivable approximation. The analytic continuation method is then applied to Euclidean data previously obtained in the O(4) symmetric model (within a given renormalization scheme) to assess the difference between zero-momentum and pole masses, which is in general a difficult question to answer within nonperturbative approaches such as the Phi-derivable expansion scheme.<br />Comment: 20 pages, 8 figures, uses RevTeX 4-1

Details

Language :
English
ISSN :
15507998 and 15502368
Database :
OpenAIRE
Journal :
Phys.Rev.D, Phys.Rev.D, 2017, 96 (3), pp.036002. 〈10.1103/PhysRevD.96.036002〉, Phys.Rev.D, 2017, 96 (3), pp.036002. ⟨10.1103/PhysRevD.96.036002⟩, Physical Review D, Physical Review D, American Physical Society, 2017, 96 (3), pp.036002. ⟨10.1103/PhysRevD.96.036002⟩
Accession number :
edsair.doi.dedup.....1efe7284703cfa5d9904e3c7396c9857
Full Text :
https://doi.org/10.1103/PhysRevD.96.036002〉