Back to Search
Start Over
Predicting COVID-19–Related Health Care Resource Utilization Across a Statewide Patient Population: Model Development Study
- Source :
- Journal of Medical Internet Research
- Publication Year :
- 2021
- Publisher :
- JMIR Publications, 2021.
-
Abstract
- Background The COVID-19 pandemic has highlighted the inability of health systems to leverage existing system infrastructure in order to rapidly develop and apply broad analytical tools that could inform state- and national-level policymaking, as well as patient care delivery in hospital settings. The COVID-19 pandemic has also led to highlighted systemic disparities in health outcomes and access to care based on race or ethnicity, gender, income-level, and urban-rural divide. Although the United States seems to be recovering from the COVID-19 pandemic owing to widespread vaccination efforts and increased public awareness, there is an urgent need to address the aforementioned challenges. Objective This study aims to inform the feasibility of leveraging broad, statewide datasets for population health–driven decision-making by developing robust analytical models that predict COVID-19–related health care resource utilization across patients served by Indiana’s statewide Health Information Exchange. Methods We leveraged comprehensive datasets obtained from the Indiana Network for Patient Care to train decision forest-based models that can predict patient-level need of health care resource utilization. To assess these models for potential biases, we tested model performance against subpopulations stratified by age, race or ethnicity, gender, and residence (urban vs rural). Results For model development, we identified a cohort of 96,026 patients from across 957 zip codes in Indiana, United States. We trained the decision models that predicted health care resource utilization by using approximately 100 of the most impactful features from a total of 1172 features created. Each model and stratified subpopulation under test reported precision scores >70%, accuracy and area under the receiver operating curve scores >80%, and sensitivity scores approximately >90%. We noted statistically significant variations in model performance across stratified subpopulations identified by age, race or ethnicity, gender, and residence (urban vs rural). Conclusions This study presents the possibility of developing decision models capable of predicting patient-level health care resource utilization across a broad, statewide region with considerable predictive performance. However, our models present statistically significant variations in performance across stratified subpopulations of interest. Further efforts are necessary to identify root causes of these biases and to rectify them.
- Subjects :
- healthcare resources
medicine.medical_specialty
Health Information Exchange
Population
digital health
health data
Population health
Health informatics
decision models
Environmental health
health care utilization
Health care
medicine
Humans
education
health informatics
Pandemics
health disparities
education.field_of_study
Original Paper
business.industry
SARS-CoV-2
Public health
pandemic
public health
COVID-19
Health information exchange
Patient Acceptance of Health Care
Digital health
Health equity
United States
health information
machine learning
epidemiology
business
Psychology
population health
Subjects
Details
- Language :
- English
- ISSN :
- 14388871 and 14394456
- Volume :
- 23
- Issue :
- 11
- Database :
- OpenAIRE
- Journal :
- Journal of Medical Internet Research
- Accession number :
- edsair.doi.dedup.....1f79dd5a33b312a7e887f9c4b2fdac3c