Back to Search Start Over

Parameter identification and identifiability analysis of lithium‐ion batteries

Authors :
Jung-Il Choi
YUN YOUNG CHOI
Sanghyun Kim
Seongyoon Kim
Kyunghyun Kim
Source :
Energy Science & Engineering, Vol 10, Iss 2, Pp 488-506 (2022)
Publication Year :
2021
Publisher :
Wiley, 2021.

Abstract

Parameter identification (PI) is a cost‐effective approach for estimating the parameters of an electrochemical model for lithium‐ion batteries (LIBs). However, it requires identifiability analysis (IA) of model parameters because identifiable parameters vary with reference data and electrochemical models. Therefore, we propose a PI and IA (PIIA) framework for a robust PI that can adapt to discharge data. The IA results show that the best subset with 15 parameters is determined by the Fisher information matrix and the sample‐averaged RDE criterion under various operating conditions. The identification process based on a genetic algorithm determines the optimal parameters. The identified‐parameter model predicts voltage curves with uncertainty bounds, considering the confidence intervals of identified parameters. Further, we demonstrate that the proposed PIIA framework robustly identifies the parameters of the electrochemical model from experimental data.

Details

ISSN :
20500505
Volume :
10
Database :
OpenAIRE
Journal :
Energy Science & Engineering
Accession number :
edsair.doi.dedup.....1fb8ac7f1fd6e14b760ce6728e95773c
Full Text :
https://doi.org/10.1002/ese3.1039