Back to Search Start Over

Espace des parties réelles des éléments d'une algèbre de Banach de fonctions

Authors :
A Bernard
Source :
Journal of Functional Analysis. 10:387-409
Publication Year :
1972
Publisher :
Elsevier BV, 1972.

Abstract

In this paper we study the functions which operate on Re A (the space of real parts of elements of a Banach function algebra A). We prove as our main result that if A is uniform or if A is ultraseparating, then only linear functions operate boundedly. We finally obtain a dichotomy for symbolic calculus on C̃(K), where K is a compact subset of the unit circle T andC̃(K) denotes the space of those continuous functions ƒ on K which admit a continuous extension to T whose Fourier conjugate is continuous.

Details

ISSN :
00221236
Volume :
10
Database :
OpenAIRE
Journal :
Journal of Functional Analysis
Accession number :
edsair.doi.dedup.....1fdd276168572f4cdf822e7851a714fb
Full Text :
https://doi.org/10.1016/0022-1236(72)90036-5