Back to Search Start Over

Coordinated Cross-Talk Between the Myc and Mlx Networks in Liver Regeneration and Neoplasia

Authors :
Sarangarajan Ranganathan
Patrick A. Carroll
Edward V. Prochownik
Michael Torbenson
Frances Alencastro
Robert N. Eisenman
Julia Fiedor
Andrew W. Duncan
Alexander Roberts
Jie Lu
Huabo Wang
Publication Year :
2021
Publisher :
Cold Spring Harbor Laboratory, 2021.

Abstract

Background & AimsThe c-Myc (Myc) bHLH-ZIP transcription factor is deregulated in most cancers. In association with Max, Myc controls target genes that supervise metabolism, ribosome biogenesis, translation and proliferation. This “Myc Network” cross-talks with the “Mlx Network”, which consists of the Myc-like proteins MondoA and ChREBP and Max-like Mlx. Together, this “Extended Myc Network” regulates both common and distinct genes targets. Here we studied the consequence of Myc and/or Mlx ablation in the liver, particularly those pertaining to hepatocyte proliferation, metabolism and spontaneous tumorigenesis.MethodsWe examined the ability of hepatocytes lacking Mlx (MlxKO) or Myc+Mlx (double KO or DKO) to repopulate the liver over an extended period of time in a murine model of Type I tyrosinemia. We also compared this and other relevant behaviors, phenotypes and transcriptomes of the livers to those from previously characterized MycKO, ChrebpKO and MycKO x ChrebpKO mice.ResultsHepatocyte regenerative potential deteriorated as the Extended Myc Network was progressively dismantled. Genes and pathways dysregulated in MlxKO and DKO hepatocytes included those pertaining to translation, mitochondrial function and non-alcoholic fatty liver disease (NAFLD). The Myc and Mlx Networks were shown to cross-talk, with the latter playing a disproportionate role in target gene regulation. All cohorts also developed NAFLD and molecular evidence of early steatohepatitis. Finally, MlxKO and DKO mice displayed extensive hepatic adenomatosis.ConclusionsIn addition to demonstrating cooperation between the Myc and Mlx Networks, this study revealed the latter to be more important in maintaining proliferative, metabolic and translational homeostasis, while concurrently serving as a suppressor of benign tumorigenesis.SynopsisThe Myc and Mlx Networks exhibit extensive cross-talk and regulate distinct but overlapping sets of transcriptional targets. The current work demonstrates the cooperation between these two Networks in supporting the regenerative capabilities of normal hepatocytes while also revealing that the Mlx Network serves as a suppressor of spontaneous hepatic adenomatosis

Details

Database :
OpenAIRE
Accession number :
edsair.doi.dedup.....2003e6709dd5fc79df4b94c3f883d881
Full Text :
https://doi.org/10.1101/2021.08.05.455215