Back to Search Start Over

Sequence effects of aminofluorene-modified DNA duplexes: thermodynamic and circular dichroism properties

Authors :
Gregory Norigian
M. Paul Chiarelli
Srinivasarao Meneni
Bongsup P. Cho
Lan Gao
Gregory J. Baker
Rhijuta D'Mello
Source :
Nucleic Acids Research
Publication Year :
2006
Publisher :
Oxford University Press (OUP), 2006.

Abstract

Circular dichroism (CD) and UV-melting experiments were conducted with 16 oligodeoxynucleotides modified by the carcinogen 2-aminofluorene, whose sequence around the lesion was varied systematically [d(CTTCTNG[AF]NCCTC), N = G, A, C, T], to gain insight into the factors that determine the equilibrium between base-displaced stacked (S) and external B-type (B) duplex conformers. Differing stabilities among the duplexes can be attributed to different populations of S and B conformers. The AF modification always resulted in sequence-dependent thermal (T(m)) and thermodynamic (-DeltaG degrees ) destabilization. The population of B-type conformers derived from eight selected duplexes (i.e. -AG*N- and -CG*N-) was inversely proportional to the -DeltaG degrees and T(m) values, which highlights the importance of carcinogen/base stacking in duplex stabilization even in the face of disrupted Watson-Crick base pairing in S-conformation. CD studies showed that the extent of the adduct-induced negative ellipticities in the 290-350 nm range is correlated linearly with -DeltaG degrees and T(m), but inversely with the population of B-type conformations. Taken together, these results revealed a unique interplay between the extent of carcinogenic interaction with neighboring base pairs and the thermodynamic properties of the AF-modified duplexes. The sequence-dependent S/B heterogeneities have important implications in understanding how arylamine-DNA adducts are recognized in nucleotide excision repair.

Details

ISSN :
13624962 and 03051048
Volume :
34
Database :
OpenAIRE
Journal :
Nucleic Acids Research
Accession number :
edsair.doi.dedup.....20166e2dbf3d7c3d93fb2ab4af5ca8fe
Full Text :
https://doi.org/10.1093/nar/gkl153