Back to Search Start Over

Activating mutations in STIM1 and ORAI1 cause overlapping syndromes of tubular myopathy and congenital miosis

Authors :
Thomas Lehmann
Graham B. Wiley
Nortina Shahrizaila
Patrick M. Gaffney
E-Ching Ong
Mohnish Suri
Klaas J. Wierenga
Nicholas Katsanis
Maria Kousi
Leonidas Tsiokas
Vasyl Nesin
David Nicholl
Publication Year :
2014
Publisher :
National Academy of Sciences, 2014.

Abstract

Signaling through the store-operated Ca(2+) release-activated Ca(2+) (CRAC) channel regulates critical cellular functions, including gene expression, cell growth and differentiation, and Ca(2+) homeostasis. Loss-of-function mutations in the CRAC channel pore-forming protein ORAI1 or the Ca(2+) sensing protein stromal interaction molecule 1 (STIM1) result in severe immune dysfunction and nonprogressive myopathy. Here, we identify gain-of-function mutations in the cytoplasmic domain of STIM1 (p.R304W) associated with thrombocytopenia, bleeding diathesis, miosis, and tubular myopathy in patients with Stormorken syndrome, and in ORAI1 (p.P245L), associated with a Stormorken-like syndrome of congenital miosis and tubular aggregate myopathy but without hematological abnormalities. Heterologous expression of STIM1 p.R304W results in constitutive activation of the CRAC channel in vitro, and spontaneous bleeding accompanied by reduced numbers of thrombocytes in zebrafish embryos, recapitulating key aspects of Stormorken syndrome. p.P245L in ORAI1 does not make a constitutively active CRAC channel, but suppresses the slow Ca(2+)-dependent inactivation of the CRAC channel, thus also functioning as a gain-of-function mutation. These data expand our understanding of the phenotypic spectrum of dysregulated CRAC channel signaling, advance our knowledge of the molecular function of the CRAC channel, and suggest new therapies aiming at attenuating store-operated Ca(2+) entry in the treatment of patients with Stormorken syndrome and related pathologic conditions.

Details

Language :
English
Database :
OpenAIRE
Accession number :
edsair.doi.dedup.....202add02af9bdc3858b1d11c1f602a46