Back to Search Start Over

Snowmelt timing alters shallow but not deep soil moisture in the Sierra Nevada

Authors :
M. W. Meadows
Joseph C. Blankinship
Stephen C. Hart
Ryan G. Lucas
Source :
Water Resources Research, vol 50, iss 2
Publication Year :
2014
Publisher :
eScholarship, University of California, 2014.

Abstract

Roughly one-third of the Earth's land surface is seasonally covered by snow. In many of these ecosystems, the spring snowpack is melting earlier due to climatic warming and atmospheric dust deposition, which could greatly modify soil water resources during the growing season. Though snowmelt timing is known to influence soil water availability during summer, there is little known about the depth of the effects and how long the effects persist. We therefore manipulated the timing of seasonal snowmelt in a high-elevation mixed-conifer forest in a Mediterranean climate during consecutive wet and dry years. The snow-all-gone (SAG) date was advanced by 6 days in the wet year and 3 days in the dry year using black sand to reduce the snow surface albedo. To maximize variation in snowmelt timing, we also postponed the SAG date by 8 days in the wet year and 16 days in the dry year using white fabric to shade the snowpack from solar radiation. We found that deeper soil water (30-60 cm) did not show a statistically significant response to snowmelt timing. Shallow soil water (0-30 cm), however, responded strongly to snowmelt timing. The drying effect of accelerated snowmelt lasted 2 months in the 0-15 cm depth and at least 4 months in the 15-30 cm depth. Therefore, the legacy of snowmelt timing on soil moisture can persist through dry periods, and continued earlier snowmelt due to climatic warming and windblown dust could reduce near-surface water storage and availability to plants and soil biota. Key Points The hydrological signal of snowmelt timing was strongest in shallow soil Effects of snowmelt timing on soil moisture lasted 2-4 months Advancing snowmelt timing by 2-3 weeks depleted shallow soil water by one third © 2014. American Geophysical Union. All Rights Reserved.

Details

Database :
OpenAIRE
Journal :
Water Resources Research, vol 50, iss 2
Accession number :
edsair.doi.dedup.....204374cd51400c4a99946e0c95cfefb3