Back to Search Start Over

Roles of the anterior basolateral amygdalar nucleus during exposure to a live predator and to a predator-associated context

Authors :
Marcus Vinícius C. Baldo
Newton S. Canteras
Ricardo Passoni Bindi
Source :
Repositório Institucional da USP (Biblioteca Digital da Produção Intelectual), Universidade de São Paulo (USP), instacron:USP
Publication Year :
2018
Publisher :
Elsevier BV, 2018.

Abstract

The basolateral amygdala complex, which includes the lateral, basolateral and basomedial nuclei, has been implicated in innate and contextual fear responses to predator threats. In the basolateral complex, the lateral and posterior basomedial nuclei are able to process predator odor information, and they project to the predator-responsive hypothalamic circuit; lesions in these amygdalar sites reduce innate responses and practically abolish contextual fear responses to predatory threats. In contrast to the lateral and posterior basomedial nuclei, the basolateral nucleus does not receive direct information from predator olfactory cues and has no direct link to the predator-responsive hypothalamic circuit. No attempt has previously been made to determine the specific role of the basolateral nucleus in fear responses to predatory threats, and we currently addressed this question by making bilateral N-methyl-D-aspartate lesions in the anterior basolateral nucleus of the amygdala (BLAa), which is often regarded as being contiguous with the lateral amygdalar nucleus, and tested both innate and contextual fear in response to cat exposure. Accordingly, BLAa lesions decreased both innate and contextual fear responses to predator exposure. Considering the targets of the BLAa, the nucleus accumbens appears to be a potential candidate to influence innate defensive responses to predator threats. The present findings also suggest that the BLAa has a role in fear memory of predator threat. The BLAa is likely involved in memory consolidation, which could potentially engage BLAa projection targets, opening interesting possibilities in the investigation of how these targets could be involved in the consolidation of predator-related fear memory.

Details

ISSN :
01664328
Volume :
342
Database :
OpenAIRE
Journal :
Behavioural Brain Research
Accession number :
edsair.doi.dedup.....204ccf60589c4961ab9857bfdc50d967
Full Text :
https://doi.org/10.1016/j.bbr.2018.01.016