Back to Search Start Over

Heterogeneous presynaptic Ca2+channel types triggering GABA release onto medial preoptic neurons from rat

Authors :
Staffan Johansson
David Haage
Urban Karlsson
Source :
The Journal of Physiology. 507:77-91
Publication Year :
1998
Publisher :
Wiley, 1998.

Abstract

1. Voltage-dependent Ca2+ channels triggering GABA release onto neurons from the medial preoptic nucleus of rat were investigated. Acutely dissociated neurons with adherent functional synaptic terminals were investigated by tight-seal whole-cell recordings from the postsynaptic cells. 2. Spontaneous current events similar to miniature postsynaptic currents were recorded. They were blocked by bicuculline (100 microM), showed a roughly unimodal amplitude distribution and a reversal potential consistent with a Cl- current, and were therefore attributed to GABAA receptors activated by synaptically released GABA. 3. Application of 140 mM KCl, expected to depolarize presynaptic terminals, evoked currents that were ascribed to a more massive release of GABA. The KCl-induced synaptic currents were abolished in Ca2+-free solutions and showed a roughly hyperbolic relation to external Ca2+ concentration with half-saturation at 0.15 mM. They further depended on the concentration of applied KCl in a way expected for high-threshold Ca2+ channels. 4. The KCl-evoked synaptic currents were completely blocked by 200 microM Cd2+, but only partially blocked by 200 microM Ni2+. The KCl-evoked synaptic currents were insensitive to the L-type Ca2+ channel blocker nifedipine (10 microM). However, the synaptic currents were sensitive to either 1 microM omega-conotoxin GVIA, 25 nM omega-agatoxin IVA or 1 microM omega-conotoxin MVIIC. 6. It was concluded that, in many presynaptic terminals, the Ca2+ influx triggering GABA release onto medial preoptic neurons is mainly mediated by one predominant type of high- threshold Ca2+ channel that may be either of N-, P- or Q-type. 7. It was further concluded that terminals with similar predominant channel types often were clustered on the same postsynaptic cell.

Details

ISSN :
00223751
Volume :
507
Database :
OpenAIRE
Journal :
The Journal of Physiology
Accession number :
edsair.doi.dedup.....204f412238f28cb8ea498879f17000ad
Full Text :
https://doi.org/10.1111/j.1469-7793.1998.077bu.x