Back to Search
Start Over
X-ray emission from hot gas in galaxy groups and clusters in simba
- Source :
- Robson, D & Davé, R 2020, ' X-ray Emission From Hot Gas in Galaxy Groups and Clusters in Simba ', Monthly Notices of the Royal Astronomical Society, vol. 498, no. 3, pp. 3061-3076 . https://doi.org/10.1093/mnras/staa2394
- Publication Year :
- 2020
- Publisher :
- Oxford University Press (OUP), 2020.
-
Abstract
- We examine X-ray scaling relations for massive haloes (M500>1012.3M⊙) in the simba galaxy formation simulation. The X-ray luminosity, LX versus M500 has power-law slopes ≈53 and ≈83 above and below 1013.5M⊙, deviating from the self-similarity increasingly to low masses. TX − M500 is self-similar above this mass, and slightly shallower below it. Comparing simba to observed TX scalings, we find that LX, LX-weighted [Fe/H], and entropies at 0.1R200 (S0.1) and R500 (S500) all match reasonably well. S500 − TX is consistent with self-similar expectations, but S0.1 − TX is shallower at lower TX, suggesting the dominant form of heating moves from gravitational shocks in the outskirts to non-gravitational feedback in the cores of smaller groups. simba matches observations of LX versus central galaxy stellar mass M*, predicting the additional trend that star-forming galaxies have higher LX(M*). Electron density profiles for M500>1014M⊙ haloes show a ∼0.1R200 core, but the core is larger at lower masses. TX are reasonably matched to observations, but entropy profiles are too flat versus observations for intermediate-mass haloes, with Score ≈ 200–400 keV cm2. simba’s [Fe/H] profile matches observations in the core but overenriches larger radii. We demonstrate that Simba’s bipolar jet AGN feedback is most responsible for increasingly evacuating lower-mass haloes, but the profile comparisons suggest this may be too drastic in the inner regions.
- Subjects :
- Physics
Electron density
Stellar mass
010308 nuclear & particles physics
astro-ph.GA
FOS: Physical sciences
Astronomy and Astrophysics
Astrophysics
Astrophysics - Astrophysics of Galaxies
01 natural sciences
Galaxy
Gravitation
Galaxy groups and clusters
Space and Planetary Science
Astrophysics of Galaxies (astro-ph.GA)
0103 physical sciences
Galaxy formation and evolution
Halo
010303 astronomy & astrophysics
Scaling
Subjects
Details
- ISSN :
- 13652966 and 00358711
- Volume :
- 498
- Database :
- OpenAIRE
- Journal :
- Monthly Notices of the Royal Astronomical Society
- Accession number :
- edsair.doi.dedup.....210edf74fee63746f8bee8453e33b640
- Full Text :
- https://doi.org/10.1093/mnras/staa2394