Back to Search Start Over

RDF Graph Summarization Based on Approximate Patterns

Authors :
Claudio Lucchese
Dimitris Kotzinos
Dan Vodislav
Mussab Zneika
Equipes Traitement de l'Information et Systèmes (ETIS - UMR 8051)
Ecole Nationale Supérieure de l'Electronique et de ses Applications (ENSEA)-Centre National de la Recherche Scientifique (CNRS)-CY Cergy Paris Université (CY)
Istituto di Scienza e Tecnologie dell’Informazione 'A. Faedo' (ISTI)
Springer
Source :
info:cnr-pdr/source/autori:Zneika M.; Lucchese C.; Vodislav D.; Kotzinos D./congresso_nome:10th International Workshop on Information Search, Integration and Personalization (ISIP)/congresso_luogo:Grand Forks, ND, USA/congresso_data:1-2 October, 2015/anno:2016/pagina_da:69/pagina_a:87/intervallo_pagine:69–87, Information Search, Integration, and Personalization; 10th International Workshop, ISIP 2015, Information Search, Integration, and Personalization; 10th International Workshop, ISIP 2015, 2015, Grand Forks, United States. pp.69-87, ⟨10.1007/978-3-319-43862-7_4⟩, Communications in Computer and Information Science ISBN: 9783319438610, ISIP
Publication Year :
2016
Publisher :
SPRINGER INTERNATIONAL PUBLISHING AG, 2016.

Abstract

International audience; The Linked Open Data (LOD) cloud brings together information described in RDF and stored on the web in (possibly distributed) RDF Knowledge Bases (KBs). The data in these KBs are not necessarily described by a known schema and many times it is extremely time consuming to query all the interlinked KBs in order to acquire the necessary information. But even when the KB schema is known, we need actually to know which parts of the schema are used. We solve this problem by summarizing large RDF KBs using top-K approximate RDF graph patterns , which we transform to an RDF schema that describes the contents of the KB. This schema describes accurately the KB, even more accurately than an existing schema because it describes the actually used schema, which corresponds to the existing data. We add information on the number of various instances of the patterns, thus allowing the query to estimate the expected results. That way we can then query the RDF graph summary to identify whether the necessary information is present and if it is present in significant numbers whether to be included in a federated query result.

Details

Language :
English
ISBN :
978-3-319-43861-0
ISBNs :
9783319438610
Database :
OpenAIRE
Journal :
info:cnr-pdr/source/autori:Zneika M.; Lucchese C.; Vodislav D.; Kotzinos D./congresso_nome:10th International Workshop on Information Search, Integration and Personalization (ISIP)/congresso_luogo:Grand Forks, ND, USA/congresso_data:1-2 October, 2015/anno:2016/pagina_da:69/pagina_a:87/intervallo_pagine:69–87, Information Search, Integration, and Personalization; 10th International Workshop, ISIP 2015, Information Search, Integration, and Personalization; 10th International Workshop, ISIP 2015, 2015, Grand Forks, United States. pp.69-87, ⟨10.1007/978-3-319-43862-7_4⟩, Communications in Computer and Information Science ISBN: 9783319438610, ISIP
Accession number :
edsair.doi.dedup.....2172cf59facea6e9336fee3280b68523
Full Text :
https://doi.org/10.1007/978-3-319-43862-7_4⟩