Back to Search
Start Over
Deciphering mineralogical changes and carbonation development during hydration and ageing of a consolidated ternary blended cement paste
- Source :
- International Union of Crystallography journal, International Union of Crystallography journal, 2018, 5 (2), pp.150-157. ⟨10.1107/S205225251701836X⟩, IUCrJ, vol 5, iss Pt 2, IUCrJ, IUCrJ, Vol 5, Iss 2, Pp 150-157 (2018), International Union of Crystallography journal, International Union of Crystallography 2018, 5 (2), pp.150-157. ⟨10.1107/S205225251701836X⟩, 'IUCrJ ', vol: 5, pages: 150-157 (2018)
- Publication Year :
- 2018
- Publisher :
- HAL CCSD, 2018.
-
Abstract
- Both a cured cement paste and a paste undergoing in situ hydration have been characterized using state-of-the-art synchrotron diffraction tomography. The mineralogy, macroporosity and carbonation phenomena of the samples have been determined.<br />To understand the main properties of cement, a ubiquitous material, a sound description of its chemistry and mineralogy, including its reactivity in aggressive environments and its mechanical properties, is vital. In particular, the porosity distribution and associated sample carbonation, both of which affect cement’s properties and durability, should be quantified accurately, and their kinetics and mechanisms of formation known both in detail and in situ. However, traditional methods of cement mineralogy analysis (e.g. chemical mapping) involve sample preparation (e.g. slicing) that can be destructive and/or expose cement to the atmosphere, leading to preparation artefacts (e.g. dehydration). In addition, the kinetics of mineralogical development during hydration, and associated porosity development, cannot be examined. To circumvent these issues, X-ray diffraction computed tomography (XRD-CT) has been used. This allowed the mineralogy of ternary blended cement composed of clinker, fly ash and blast furnace slag to be deciphered. Consistent with previous results obtained for both powdered samples and dilute systems, it was possible, using a consolidated cement paste (with a water-to-solid ratio akin to that used in civil engineering), to determine that the mineralogy consists of alite (only detected in the in situ hydration experiment), calcite, calcium silicate hydrates (C-S-H), ettringite, mullite, portlandite, and an amorphous fraction of unreacted slag and fly ash. Mineralogical evolution during the first hydration steps indicated fast ferrite reactivity. Insights were also gained into how the cement porosity evolves over time and into associated spatially and time-resolved carbonation mechanisms. It was observed that macroporosity developed in less than 30 h of hydration, with pore sizes reaching about 100–150 µm in width. Carbonation was not observed for this time scale, but was found to affect the first 100 µm of cement located around macropores in a sample cured for six months. Regarding this carbonation, the only mineral detected was calcite.
- Subjects :
- cement
Ettringite
Materials science
Alite
carbonation
porosity
Carbonation
X-ray diffraction tomography
0211 other engineering and technologies
macromolecular substances
02 engineering and technology
engineering.material
Biochemistry
Atomic
Portlandite
[SPI.MAT]Engineering Sciences [physics]/Materials
chemistry.chemical_compound
Particle and Plasma Physics
021105 building & construction
General Materials Science
Nuclear
[SDU.STU.AG]Sciences of the Universe [physics]/Earth Sciences/Applied geology
Cement
Crystallography
synchrotron radiation
Metallurgy
Molecular
General Chemistry
equipment and supplies
021001 nanoscience & nanotechnology
Condensed Matter Physics
Research Papers
6. Clean water
FRELON CAMERA
chemistry
QD901-999
Ground granulated blast-furnace slag
Fly ash
biological sciences
Calcium silicate
engineering
0210 nano-technology
calcite
Physical Chemistry (incl. Structural)
Subjects
Details
- Language :
- English
- ISSN :
- 20522525
- Database :
- OpenAIRE
- Journal :
- International Union of Crystallography journal, International Union of Crystallography journal, 2018, 5 (2), pp.150-157. ⟨10.1107/S205225251701836X⟩, IUCrJ, vol 5, iss Pt 2, IUCrJ, IUCrJ, Vol 5, Iss 2, Pp 150-157 (2018), International Union of Crystallography journal, International Union of Crystallography 2018, 5 (2), pp.150-157. ⟨10.1107/S205225251701836X⟩, 'IUCrJ ', vol: 5, pages: 150-157 (2018)
- Accession number :
- edsair.doi.dedup.....219d74f32f700f436ebf90d1752ce29e
- Full Text :
- https://doi.org/10.1107/S205225251701836X⟩