Back to Search Start Over

Phylogeny‐guided characterization of glycosyltransferases for epothilone glycosylation

Authors :
Changsheng Wu
Yue-zhong Li
Xin-Jing Yue
Ya Gong
Qi Chen
Youming Zhang
Zhi-feng Li
Duo-hong Sheng
Yao‐yao Li
Peng Zhang
Zheng Zhang
Source :
Microbial Biotechnology, Vol 12, Iss 4, Pp 763-774 (2019), Microbial Biotechnology
Publication Year :
2019
Publisher :
Wiley, 2019.

Abstract

Summary Glycosylation of natural products can influence their pharmacological properties, and efficient glycosyltransferases (GTs) are critical for this purpose. The polyketide epothilones are potent anti‐tumour compounds, and YjiC is the only reported GT for the glycosylation of epothilone. In this study, we phylogenetically analysed 8261 GTs deposited in CAZy database and revealed that YjiC locates in a subbranch of the Macrolide I group, forming the YjiC‐subbranch with 160 GT sequences. We demonstrated that the YjiC‐subbranch GTs are normally efficient in epothilone glycosylation, but some showed low glycosylation activities. Sequence alignment of YjiC‐subbranch showed that the 66th and 77th amino acid residues, which were close to the catalytic cavity in molecular docking model, were conserved in five high‐active GTs (Q66 and P77) but changed in two low‐efficient GTs. Site‐directed residues swapping at the two positions in the two low‐active GTs (BssGT and BamGT) and the high‐active GT BsGT‐1 demonstrated that the two amino acid residues played an important role in the catalytic efficiency of epothilone glycosylation. This study highlights that the potent GTs for appointed compounds are phylogenetically grouped with conserved residues for the catalytic efficiency.

Details

Language :
English
ISSN :
17517915
Volume :
12
Issue :
4
Database :
OpenAIRE
Journal :
Microbial Biotechnology
Accession number :
edsair.doi.dedup.....21c0ef6ca629851c3a2d60d785bf0ae4