Back to Search
Start Over
Exponential Stability for the Schlogl System by Pyragas Feedback
- Source :
- WOS:000516017000001, RUO. Repositorio Institucional de la Universidad de Oviedo, instname, RUO: Repositorio Institucional de la Universidad de Oviedo, Universidad de Oviedo (UNIOVI)
- Publication Year :
- 2020
-
Abstract
- The Schlögl system is governed by a nonlinear reaction-diffusion partial differential equation with a cubic nonlinearity. In this paper, feedback laws of Pyragas-type are presented that stabilize the system in a periodic state with a given period and given boundary traces. We consider the system both with boundary feedback laws of Pyragas type and distributed feedback laws of Pyragas and classical type. Stabilization to periodic orbits is important for medical applications that concern Parkinson’s disease. The exponential stability of the closed loop system with respect to the L2-norm is proved. Numerical examples are provided.
- Subjects :
- delay differential equations
exponential stability
General Mathematics
500 Naturwissenschaften und Mathematik::510 Mathematik::510 Mathematik
Boundary (topology)
Robin feedback
Type (model theory)
Exponential stability
stabilization of desired orbits
93C20
Applied mathematics
ddc:510
parabolic partial differential equation
periodic operation
Mathematics
49J20
Lyapunov function
Partial differential equation
Poincaré–Friedrichs inequality
State (functional analysis)
boundary feedback
Nonlinear system
93B52
Periodic orbits
stabilization of periodic orbits
Closed loop
Subjects
Details
- Language :
- English
- Database :
- OpenAIRE
- Journal :
- WOS:000516017000001, RUO. Repositorio Institucional de la Universidad de Oviedo, instname, RUO: Repositorio Institucional de la Universidad de Oviedo, Universidad de Oviedo (UNIOVI)
- Accession number :
- edsair.doi.dedup.....2277ad3cb74568a51166907ddff44ee7