Back to Search Start Over

Exponential Stability for the Schlogl System by Pyragas Feedback

Authors :
Martin Gugat
Fredi Tröltzsch
Mariano Mateos
Source :
WOS:000516017000001, RUO. Repositorio Institucional de la Universidad de Oviedo, instname, RUO: Repositorio Institucional de la Universidad de Oviedo, Universidad de Oviedo (UNIOVI)
Publication Year :
2020

Abstract

The Schlögl system is governed by a nonlinear reaction-diffusion partial differential equation with a cubic nonlinearity. In this paper, feedback laws of Pyragas-type are presented that stabilize the system in a periodic state with a given period and given boundary traces. We consider the system both with boundary feedback laws of Pyragas type and distributed feedback laws of Pyragas and classical type. Stabilization to periodic orbits is important for medical applications that concern Parkinson’s disease. The exponential stability of the closed loop system with respect to the L2-norm is proved. Numerical examples are provided.

Details

Language :
English
Database :
OpenAIRE
Journal :
WOS:000516017000001, RUO. Repositorio Institucional de la Universidad de Oviedo, instname, RUO: Repositorio Institucional de la Universidad de Oviedo, Universidad de Oviedo (UNIOVI)
Accession number :
edsair.doi.dedup.....2277ad3cb74568a51166907ddff44ee7