Back to Search Start Over

Neurotrophic 3,9-Bis[(alkylthio)methyl]- and -Bis(alkoxymethyl)-K-252a Derivatives

Authors :
Jeffry L. Vaught
Robert L. Hudkins
Hiromitsu Saito
Yuzuru Matsuda
Nicola Neff
Craig A. Dionne
David P. Rotella
Glicksman Marcie A
Saito Yutaka
James C. Kauer
John P. Mallamo
Thelma S. Angeles
Masami Kaneko
Chikara Murakata
Tadashi Matsumoto
Source :
Journal of Medicinal Chemistry. 40:1863-1869
Publication Year :
1997
Publisher :
American Chemical Society (ACS), 1997.

Abstract

A series of 3,9 disubstituted [(alkylthio)methyl]- and (alkoxymethyl)-K-252a derivatives was synthesized with the aim of enhancing and separating the neurotrophic properties from the undesirable NGF (trk A kinase) and PKC inhibitory activities of K-252a. Data from this series reveal that substitution in the 3- and 9-positions of K-252a with these groups reduces trk A kinase inhibitory properties approximately 100- to500-fold while maintaining or in certain cases enhancing the neurotrophic activity. From this research, 3,9-bis[(ethylthio)methyl]-K-252a (8) was identified as a potent and selective neurotrophic agent in vitro as measured by enhancement of choline acetyltransferase activity in embryonic rat spinal cord and basal forebrain cultures. Compound 8 was found to have weak kinase inhibitory activity for trk A, protein kinase C1 protein kinase A, and myosin light chain kinase. On the basis of the in vitro profile, 8 was evaluated in in vivo models suggestive of neurological diseases. Compound 8 was active in preventing degeneration of cholinergic neurons of the nucleus basalis magnocellularis (NBM) and reduced developmentally programmed cell death (PCD) of female rat spinal nucleus of the bulbocavernosus motoneurons and embryonic chick lumbar motoneurons.

Details

ISSN :
15204804 and 00222623
Volume :
40
Database :
OpenAIRE
Journal :
Journal of Medicinal Chemistry
Accession number :
edsair.doi.dedup.....22f12aa9d883ec35762af65701c19611