Back to Search
Start Over
In vitro Evaluation of ASCs and HUVECs Co-cultures in 3D Biodegradable Hydrogels on Neurite Outgrowth and Vascular Organization
- Source :
- Frontiers in Cell and Developmental Biology, Frontiers in Cell and Developmental Biology, Vol 8 (2020)
- Publication Year :
- 2020
- Publisher :
- Frontiers Media S.A., 2020.
-
Abstract
- Vascular disruption following spinal cord injury (SCI) decisively contributes to the poor functional recovery prognosis facing patients with the condition. Using a previously developed gellan gum hydrogel to which the adhesion motif GRGDS was grafted (GG-GRGDS), this work aimed to understand the ability of adipose-derived stem cells (ASCs) to impact vascular organization of human umbilical vein endothelial cells (HUVECs), and how this in turn affects neurite outgrowth of dorsal root ganglia (DRG) explants. Our data shows that culturing these cells together lead to a synergistic effect as showed by increased stimulation of neuritogenesis on DRG. Importantly, HUVECs were only able to assemble into vascular-like structures when cultured in the presence of ASCs, which shows the capacity of these cells in reorganizing the vascular milieu. Analysis of selected neuroregulatory molecules showed that the co-culture upregulated the secretion of several neurotrophic factors. On the other hand, ASCs, and ASCs + HUVECs presented a similar profile regarding the presence of angiotrophic molecules herein analyzed. Finally, the implantation of GG-GRGDS hydrogels encapsulating ASCs in the chick chorioallantoic membrane (CAM) lead to increases in vascular recruitment toward the hydrogels in comparison to GG-GRGDS alone. This indicates that the combination of ASCs with GG-GRGDS hydrogels could promote re-vascularization in trauma-related injuries in the central nervous system and thus control disease progression and induce functional recovery.
- Subjects :
- 0301 basic medicine
Neurite
neurovascular
Central nervous system
Umbilical vein
Cell therapy
03 medical and health sciences
Cell and Developmental Biology
0302 clinical medicine
vascularization
Neurotrophic factors
medicine
lcsh:QH301-705.5
Original Research
Chemistry
biomaterial
Cell Biology
In vitro
spinal cord injury
Cell biology
secretome
030104 developmental biology
medicine.anatomical_structure
lcsh:Biology (General)
030220 oncology & carcinogenesis
Self-healing hydrogels
adipose-derived stem cells
Stem cell
cell therapy
Developmental Biology
Subjects
Details
- Language :
- English
- ISSN :
- 2296634X
- Volume :
- 8
- Database :
- OpenAIRE
- Journal :
- Frontiers in Cell and Developmental Biology
- Accession number :
- edsair.doi.dedup.....230a7fa7c856fb45ace4b0d8ef336b9c