Back to Search Start Over

Radiation of electrons in Weibel-generated fields: a general case

Authors :
Mikhail V. Medvedev
Source :
Astrophysics and Space Science. 322:147-150
Publication Year :
2008
Publisher :
Springer Science and Business Media LLC, 2008.

Abstract

Weibel instability turns out to be the a ubiquitous phenomenon in High-Energy Density environments, ranging from astrophysical sources, e.g., gamma-ray bursts, to laboratory experiments involving laser-produced plasmas. Relativistic particles (electrons) radiate in the Weibel-produced magnetic fields in the Jitter regime. Conventionally, in this regime, the particle deflections are considered to be smaller than the relativistic beaming angle of 1/$\gamma$ ($\gamma$ being the Lorentz factor of an emitting particle) and the particle distribution is assumed to be isotropic. This is a relatively idealized situation as far as lab experiments are concerned. We relax the assumption of the isotropy of radiating particle distribution and present the extension of the jitter theory amenable for comparisons with experimental data.<br />Comment: Proceedings of International Conference on HEDP/HEDLA-08

Details

ISSN :
1572946X and 0004640X
Volume :
322
Database :
OpenAIRE
Journal :
Astrophysics and Space Science
Accession number :
edsair.doi.dedup.....2313662d7d9c30163d2ad8cea3e0accf
Full Text :
https://doi.org/10.1007/s10509-008-9927-z