Back to Search Start Over

Courant-sharp property for Dirichlet eigenfunctions on the Möbius strip

Authors :
Pierre Bérard
Bernard Helffer
Rola Kiwan
Institut Fourier (IF)
Université Grenoble Alpes [2020-....] (UGA [2020-....])-Centre National de la Recherche Scientifique (CNRS)
Laboratoire de Mathématiques Jean Leray (LMJL)
Université de Nantes - Faculté des Sciences et des Techniques
Université de Nantes (UN)-Université de Nantes (UN)-Centre National de la Recherche Scientifique (CNRS)
American University in Dubai
Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)
Centre National de la Recherche Scientifique (CNRS)-Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST)
Université de Nantes (UN)-Université de Nantes (UN)
Source :
Portugaliae Mathematica, Portugaliae Mathematica, European Mathematical Society Publishing House, 2021, 78 (1), pp.1--41
Publication Year :
2021
Publisher :
European Mathematical Society - EMS - Publishing House GmbH, 2021.

Abstract

The question of determining for which eigenvalues there exists an eigenfunction which has the same number of nodal domains as the label of the associated eigenvalue (Courant-sharp property) was motivated by the analysis of minimal spectral partitions. In previous works, many examples have been analyzed corresponding to squares, rectangles, disks, triangles, tori, \ldots . A natural toy model for further investigations is the M\"obius strip, a non-orientable surface with Euler characteristic $0$, and particularly the "square" M\"obius strip whose eigenvalues have higher multiplicities. In this case, we prove that the only Courant-sharp Dirichlet eigenvalues are the first and the second, and we exhibit peculiar nodal patterns.<br />Comment: Revised version prior to publication. Accepted for publication in Portugaliae Mathematica

Details

ISSN :
00325155 and 16622758
Volume :
78
Database :
OpenAIRE
Journal :
Portugaliae Mathematica
Accession number :
edsair.doi.dedup.....23269f1b4be533287c7954d7dde5b771
Full Text :
https://doi.org/10.4171/pm/2059