Back to Search
Start Over
Courant-sharp property for Dirichlet eigenfunctions on the Möbius strip
- Source :
- Portugaliae Mathematica, Portugaliae Mathematica, European Mathematical Society Publishing House, 2021, 78 (1), pp.1--41
- Publication Year :
- 2021
- Publisher :
- European Mathematical Society - EMS - Publishing House GmbH, 2021.
-
Abstract
- The question of determining for which eigenvalues there exists an eigenfunction which has the same number of nodal domains as the label of the associated eigenvalue (Courant-sharp property) was motivated by the analysis of minimal spectral partitions. In previous works, many examples have been analyzed corresponding to squares, rectangles, disks, triangles, tori, \ldots . A natural toy model for further investigations is the M\"obius strip, a non-orientable surface with Euler characteristic $0$, and particularly the "square" M\"obius strip whose eigenvalues have higher multiplicities. In this case, we prove that the only Courant-sharp Dirichlet eigenvalues are the first and the second, and we exhibit peculiar nodal patterns.<br />Comment: Revised version prior to publication. Accepted for publication in Portugaliae Mathematica
- Subjects :
- Mathematics - Differential Geometry
Pure mathematics
Spectral theory
General Mathematics
MSC (2010): 58C40, 49Q10
Möbius strip
01 natural sciences
Square (algebra)
Mathematics - Spectral Theory
symbols.namesake
Nodal sets
Dirichlet eigenvalue
[MATH.MATH-MP]Mathematics [math]/Mathematical Physics [math-ph]
Euler characteristic
0103 physical sciences
[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP]
0101 mathematics
Mathematical Physics
Eigenvalues and eigenvectors
Mathematics
Courant theorem
010102 general mathematics
2010: 58C40, 49Q10
Mathematics::Spectral Theory
Eigenfunction
16. Peace & justice
Surface (topology)
[MATH.MATH-DG]Mathematics [math]/Differential Geometry [math.DG]
symbols
010307 mathematical physics
Laplacian
[MATH.MATH-SP]Mathematics [math]/Spectral Theory [math.SP]
Subjects
Details
- ISSN :
- 00325155 and 16622758
- Volume :
- 78
- Database :
- OpenAIRE
- Journal :
- Portugaliae Mathematica
- Accession number :
- edsair.doi.dedup.....23269f1b4be533287c7954d7dde5b771
- Full Text :
- https://doi.org/10.4171/pm/2059