Back to Search Start Over

Black holes as gases of punctures with a chemical potential: Bose-Einstein condensation and logarithmic corrections to the entropy

Authors :
Marc Geiller
Alejandro Perez
Olivier Asin
Jibril Ben Achour
Karim Noui
Laboratoire de Mathématiques et Physique Théorique (LMPT)
Université de Tours (UT)-Centre National de la Recherche Scientifique (CNRS)
AstroParticule et Cosmologie (APC (UMR_7164))
Observatoire de Paris
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)
CPT - E4 Gravité quantique
Centre de Physique Théorique - UMR 7332 (CPT)
Aix Marseille Université (AMU)-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS)-Aix Marseille Université (AMU)-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS)
Aix Marseille Université (AMU)-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS)
Université de Tours-Centre National de la Recherche Scientifique (CNRS)
Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Observatoire de Paris
PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)
Source :
Physical Review D, Physical Review D, American Physical Society, 2015, 91 (8), pp.084005. ⟨10.1103/PhysRevD.91.084005⟩, Physical Review D, 2015, 91 (8), pp.084005. ⟨10.1103/PhysRevD.91.084005⟩
Publication Year :
2014

Abstract

We study the thermodynamical properties of black holes when described as gases of indistinguishable punctures with a chemical potential. In this picture, which arises from loop quantum gravity, the black hole microstates are defined by finite families of half-integers spins coloring the punctures, and the near-horizon energy measured by quasi-local stationary observers defines the various thermodynamical ensembles. The punctures carry excitations of quantum geometry in the form of quanta of area, and the total horizon area $a_\text{H}$ is given by the sum of these microscopic contributions. We assume here that the system satisfies the Bose-Einstein statistics, and that each microstate is degenerate with a holographic degeneracy given by $\exp\big(\lambda a_\text{H}/\ell_\text{Pl}^2\big)$ and $\lambda>0$. We analyze in detail the thermodynamical properties resulting from these inputs, and in particular compute the grand canonical entropy. We explain why the requirements that the temperature be fixed to the Unruh temperature and that the chemical potential vanishes do not specify completely the semi-classical regime of large horizon area, and classify in turn what the various regimes can be. When the degeneracy saturates the holographic bound ($\lambda=1/4$), there exists a semi-classical regime in which the subleading corrections to the entropy are logarithmic. Furthermore, this regime corresponds to a Bose-Einstein condensation, in the sense that it is dominated by punctures carrying the minimal (or ground state) spin value $1/2$.<br />Comment: 22 pages

Details

Language :
English
ISSN :
15507998 and 15502368
Database :
OpenAIRE
Journal :
Physical Review D, Physical Review D, American Physical Society, 2015, 91 (8), pp.084005. ⟨10.1103/PhysRevD.91.084005⟩, Physical Review D, 2015, 91 (8), pp.084005. ⟨10.1103/PhysRevD.91.084005⟩
Accession number :
edsair.doi.dedup.....233864513dcdb08fcfe2a6584d8cb28c
Full Text :
https://doi.org/10.1103/PhysRevD.91.084005⟩