Back to Search Start Over

Functionalized Nanocomposite Gel Polymer Electrolyte with Strong Alkaline-Tolerance and High Zinc Anode Stability for Ultralong-Life Flexible Zinc-Air Batteries

Authors :
Xiayue Fan
Haozhi Wang
Xiaorui Liu
Jie Liu
Naiqin Zhao
Cheng Zhong
Wenbin Hu
Jun Lu
Source :
Advanced materials (Deerfield Beach, Fla.).
Publication Year :
2022

Abstract

Increasing pursuit of next-generation wearable electronics has put forward the demand of reliable energy devices with high flexibility, durability and enhanced electrochemical performances. Flexible aqueous zinc-air batteries (FAZABs) have attracted great interests owing to the high energy density, safety, and environmental benignity, for which quasi-solid-state gel polymer electrolytes (QSGPEs) are state-of-the-art electrolytes with high ionic conductivity, flexibility and resistance to leakage problems of traditional liquid electrolytes. Compared to commonly used PVA-KOH electrolyte with poor electrolyte retention capability and cycling stability, a new type of sulfonate functionalized nanocomposite QSGPE is applied in FAZABs with high ionic conductivity, strong alkaline tolerance and high zinc anode stability. Notably, the existence of (1) strong anionic sulfonate groups of QSGPEs, contributing to the exposure of preferred Zn (002) plane which is more resistant to zinc dendrite formation, and (2) nano-attapulgite electrolyte additives, beneficial for the enhancement of ionic conductivity, electrolyte uptake and retention capability, endows a ultralong cycling life of 450 h for the fabricated FAZAB. Furthermore, flexible energy belts and knittable energy wires fabricated with a series/parallel unit of several FAZABs could be used to power various wearable electronics. This article is protected by copyright. All rights reserved.

Details

ISSN :
15214095
Database :
OpenAIRE
Journal :
Advanced materials (Deerfield Beach, Fla.)
Accession number :
edsair.doi.dedup.....238754ecd2a2a993ca19ed53f7df64e9