Back to Search
Start Over
Machine learning algorithms performed no better than regression models for prognostication in traumatic brain injury
- Source :
- Journal of Clinical Epidemiology, 122, 95-107. Elsevier Science, Journal of Clinical Epidemiology, 122, 95-107. ELSEVIER SCIENCE INC, Journal of Clinical Epidemiology, Journal of clinical epidemiology, New York : Elsevier, 2020, vol. 122, p. 95-107, Journal of Clinical Epidemiology, 122, 95-107. Elsevier Inc., Gravesteijn, B Y, Nieboer, D, Ercole, A, Lingsma, H F, Nelson, D, van Calster, B, Steyerberg, E W, Åkerlund, C, Amrein, K, Andelic, N, Andreassen, L, Anke, A, Antoni, A, Audibert, G, Azouvi, P, Azzolini, M L, Bartels, R, Barzó, P, Beauvais, R, Beer, R, Bellander, B M, Belli, A, Benali, H, Berardino, M, Beretta, L, Blaabjerg, M, Bragge, P, Brazinova, A, Brinck, V, Brooker, J, Brorsson, C, Buki, A, Bullinger, M, Cabeleira, M, Caccioppola, A, Calappi, E, Calvi, M R, Cameron, P, Lozano, G C, Carbonara, M, Chevallard, G, Chieregato, A, Citerio, G, Cnossen, M, Coburn, M, Coles, J, Cooper, D J, Correia, M, Čović, A, Kondziella, D & CENTER-TBI collaborators 2020, ' Machine learning algorithms performed no better than regression models for prognostication in traumatic brain injury ', Journal of Clinical Epidemiology, vol. 122, pp. 95-107 . https://doi.org/10.1016/j.jclinepi.2020.03.005, Journal of clinical epidemiology, 122, 95-107. Elsevier USA, Gravesteijn, B Y, Nieboer, D, Ercole, A, Lingsma, H F, Nelson, D, van Calster, B, Steyerberg, E W, Ylén, J-P & CENTER-TBI collaborators 2020, ' Machine learning algorithms performed no better than regression models for prognostication in traumatic brain injury ', Journal of Clinical Epidemiology, vol. 122, pp. 95-107 . https://doi.org/10.1016/j.jclinepi.2020.03.005
- Publication Year :
- 2020
- Publisher :
- Elsevier USA, 2020.
-
Abstract
- OBJECTIVE: We aimed to explore the added value of common machine learning (ML) algorithms for prediction of outcome for moderate and severe traumatic brain injury. STUDY DESIGN AND SETTING: We performed logistic (LR), lasso, and ridge regression with key baseline predictors in the IMPACT-II database (15 studies, n=11,022). ML algorithms included support vector machines, random forests, gradient boosting machines, and artificial neural networks, and were trained using the same predictors. To assess generalizability of predictions, we performed internal, internal-external, and external validation on the recent CENTER-TBI study (patients with GCS<br />Data used in preparation of this manuscript were obtained in the context of CENTER-TBI, a large collaborative project with the support of the European Union 7th Framework program (EC grant 602150). Additional funding was obtained from the Hannelore Kohl Stiftung (Germany), the OneMind (USA) and the Integra LifeSciences Corporation (USA). The funder had no role in the study design, enrollment, collection of data, writing, or publication decisions.
- Subjects :
- Male
Epidemiology
Medical Biotechnology (with a focus on Cell Biology (including Stem Cell Biology), Molecular Biology, Microbiology, Biochemistry or Biopharmacy)
Logistic regression
computer.software_genre
Data science
Machine Learning
0302 clinical medicine
Traumatic brain injury
Brain Injuries, Traumatic
Medicine
030212 general & internal medicine
Decision Making, Computer-Assisted
Glasgow Outcome Scale
Regression analysis
Middle Aged
Prognosis
3142 Public health care science, environmental and occupational health
Regression
Random forest
Female
TUTORIAL
Cohort study
Algorithm
Algorithms
Adult
BIG DATA
Prognosi
cohort study
data science
machine learning
prediction
prognosis
traumatic brain injury
Machine learning
VALIDATION
03 medical and health sciences
VDP::Teknologi: 500::Medisinsk teknologi: 620
Humans
VDP::Medisinske Fag: 700
Glasgow Coma Scale
Medicinsk bioteknologi (med inriktning mot cellbiologi (inklusive stamcellsbiologi), molekylärbiologi, mikrobiologi, biokemi eller biofarmaci)
Models, Statistical
business.industry
CARE
3141 Health care science
VDP::Medical disciplines: 700
Logistic Models
Cohort study, Data science, Machine learning, Prediction, Prognosis, Traumatic brain injury
Artificial intelligence
Gradient boosting
business
Prediction
computer
030217 neurology & neurosurgery
Predictive modelling
VDP::Technology: 500::Medical technology: 620
Subjects
Details
- Language :
- English
- ISSN :
- 08954356 and 18785921
- Database :
- OpenAIRE
- Journal :
- Journal of Clinical Epidemiology, 122, 95-107. Elsevier Science, Journal of Clinical Epidemiology, 122, 95-107. ELSEVIER SCIENCE INC, Journal of Clinical Epidemiology, Journal of clinical epidemiology, New York : Elsevier, 2020, vol. 122, p. 95-107, Journal of Clinical Epidemiology, 122, 95-107. Elsevier Inc., Gravesteijn, B Y, Nieboer, D, Ercole, A, Lingsma, H F, Nelson, D, van Calster, B, Steyerberg, E W, Åkerlund, C, Amrein, K, Andelic, N, Andreassen, L, Anke, A, Antoni, A, Audibert, G, Azouvi, P, Azzolini, M L, Bartels, R, Barzó, P, Beauvais, R, Beer, R, Bellander, B M, Belli, A, Benali, H, Berardino, M, Beretta, L, Blaabjerg, M, Bragge, P, Brazinova, A, Brinck, V, Brooker, J, Brorsson, C, Buki, A, Bullinger, M, Cabeleira, M, Caccioppola, A, Calappi, E, Calvi, M R, Cameron, P, Lozano, G C, Carbonara, M, Chevallard, G, Chieregato, A, Citerio, G, Cnossen, M, Coburn, M, Coles, J, Cooper, D J, Correia, M, Čović, A, Kondziella, D & CENTER-TBI collaborators 2020, ' Machine learning algorithms performed no better than regression models for prognostication in traumatic brain injury ', Journal of Clinical Epidemiology, vol. 122, pp. 95-107 . https://doi.org/10.1016/j.jclinepi.2020.03.005, Journal of clinical epidemiology, 122, 95-107. Elsevier USA, Gravesteijn, B Y, Nieboer, D, Ercole, A, Lingsma, H F, Nelson, D, van Calster, B, Steyerberg, E W, Ylén, J-P & CENTER-TBI collaborators 2020, ' Machine learning algorithms performed no better than regression models for prognostication in traumatic brain injury ', Journal of Clinical Epidemiology, vol. 122, pp. 95-107 . https://doi.org/10.1016/j.jclinepi.2020.03.005
- Accession number :
- edsair.doi.dedup.....23da15a14484a3e4248814da46817a4f
- Full Text :
- https://doi.org/10.1016/j.jclinepi.2020.03.005