Back to Search
Start Over
A SINGLE IMAGE DEHAZING DATASET WITH LOW-LIGHT REAL-WORLD INDOOR IMAGES, DEPTH MAPS AND INFRARED IMAGES
- Source :
- The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. :53-57
- Publication Year :
- 2023
- Publisher :
- Copernicus GmbH, 2023.
-
Abstract
- Benchmarking of haze removal methods and training related models requires appropriate datasets. The most objective metrics of assessment quality of dehazing are shown by reference metrics – i.e. those in which the reconstructed image is compared with the reference (ground-truth) image without haze. The dehazing datasets consist of pairs where haze is artificially synthesized on ground-truth images are not well suited for the assessment of the quality of dehazing methods. Accommodation of the real-world environment for take truthful pairs of hazy and haze-free images are difficult, so there are few image dehazing datasets, which consists with the real both hazy and haze-free images. The currently researcher’s attention is shifting to dehazing on “more complex” images, including those that are obtained in insufficient illumination conditions and with the presence of localized light sources. It is almost no datasets with such pairs of images, which makes it difficult of objective assessment of image dehazing methods. In this paper, we present extended version of our previously proposed dataset of this kind with more haze density levels and depths of scenes. It consists of images of 2 scenes at 4 lighting and 8 haze density levels – 64 frames in total. In addition to images in the visible spectrum, for each frame depth map and thermal image was captured. An experimental evaluation of state-of-the art haze removal methods was carried out on the resulting dataset. The dataset is available for free download at https://data.mendeley.com/datasets/jjpcj7fy6t.
Details
- ISSN :
- 21949034
- Database :
- OpenAIRE
- Journal :
- The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
- Accession number :
- edsair.doi.dedup.....23dc7a44608b0499e65da90e78bde14c
- Full Text :
- https://doi.org/10.5194/isprs-archives-xlviii-2-w3-2023-53-2023