Back to Search Start Over

Hydrogen Peroxide-coupled cis-Diol Formation Catalyzed by Naphthalene 1,2-Dioxygenase

Authors :
Matt D. Wolfe
John D. Lipscomb
Source :
Journal of Biological Chemistry. 278:829-835
Publication Year :
2003
Publisher :
Elsevier BV, 2003.

Abstract

Naphthalene 1,2-dioxygenase (NDOS) catalyzes the NAD(P)H and O(2)-dependent oxidation of naphthalene to (+)-cis-(1R,2S)-dihydroxy-1,2-dihydronaphthalene. NDOS consists of three protein components: a flavo-[2Fe-2S] reductase (NDR), a ferredoxin electron transfer protein (NDF), and an (alphabeta)(3) oxygenase (NDO) containing a mononuclear iron site and a Rieske-type [2Fe-2S] cluster in each alpha-subunit. The active site is built across a subunit-subunit boundary, and each subunit contributes one type of metal center. Our previous studies have shown that NDO with both metal centers reduced is capable of an O(2)-coupled single turnover to yield the correct cis-diol product in the absence of the NDR and NDF components (Wolfe, M. D., Parales, J. V., Gibson, D. T., and Lipscomb, J. D. (2001) J. Biol. Chem. 276, 1945-1953). It is shown here that addition of H(2)O(2) to NDO allows reaction with naphthalene to rapidly yield the correct product in a "peroxide shunt" reaction that does not require a reduced Rieske cluster. The mononuclear Fe(2+) center is oxidized during turnover, while the Rieske cluster remains in the oxidized state. Peroxide shunt turnover in the presence of (18)O-labeled H(2)O(2), H(2)O, or O(2) shows that both oxygen atoms in the product derive primarily from H(2)O(2). The peroxide shunt halts after one turnover despite the presence of excess H(2)O(2) and naphthalene, but this is not the result of enzyme inactivation. Rather, it appears that the product cannot be released when the mononuclear iron is in the Fe(3+) state, blocking a second turnover. This work supports the hypotheses that the cis-dihydroxylation activity of NDOS requires only the NDO component, that a peroxo intermediate is formed during normal catalysis, and that product release requires an additional reducing equivalent beyond those necessary for the first turnover.

Details

ISSN :
00219258
Volume :
278
Database :
OpenAIRE
Journal :
Journal of Biological Chemistry
Accession number :
edsair.doi.dedup.....23efd0f5e7473bd27e847ea21ffa1f58
Full Text :
https://doi.org/10.1074/jbc.m209604200