Back to Search
Start Over
Hydrogen Peroxide-coupled cis-Diol Formation Catalyzed by Naphthalene 1,2-Dioxygenase
- Source :
- Journal of Biological Chemistry. 278:829-835
- Publication Year :
- 2003
- Publisher :
- Elsevier BV, 2003.
-
Abstract
- Naphthalene 1,2-dioxygenase (NDOS) catalyzes the NAD(P)H and O(2)-dependent oxidation of naphthalene to (+)-cis-(1R,2S)-dihydroxy-1,2-dihydronaphthalene. NDOS consists of three protein components: a flavo-[2Fe-2S] reductase (NDR), a ferredoxin electron transfer protein (NDF), and an (alphabeta)(3) oxygenase (NDO) containing a mononuclear iron site and a Rieske-type [2Fe-2S] cluster in each alpha-subunit. The active site is built across a subunit-subunit boundary, and each subunit contributes one type of metal center. Our previous studies have shown that NDO with both metal centers reduced is capable of an O(2)-coupled single turnover to yield the correct cis-diol product in the absence of the NDR and NDF components (Wolfe, M. D., Parales, J. V., Gibson, D. T., and Lipscomb, J. D. (2001) J. Biol. Chem. 276, 1945-1953). It is shown here that addition of H(2)O(2) to NDO allows reaction with naphthalene to rapidly yield the correct product in a "peroxide shunt" reaction that does not require a reduced Rieske cluster. The mononuclear Fe(2+) center is oxidized during turnover, while the Rieske cluster remains in the oxidized state. Peroxide shunt turnover in the presence of (18)O-labeled H(2)O(2), H(2)O, or O(2) shows that both oxygen atoms in the product derive primarily from H(2)O(2). The peroxide shunt halts after one turnover despite the presence of excess H(2)O(2) and naphthalene, but this is not the result of enzyme inactivation. Rather, it appears that the product cannot be released when the mononuclear iron is in the Fe(3+) state, blocking a second turnover. This work supports the hypotheses that the cis-dihydroxylation activity of NDOS requires only the NDO component, that a peroxo intermediate is formed during normal catalysis, and that product release requires an additional reducing equivalent beyond those necessary for the first turnover.
- Subjects :
- Stereochemistry
Iron
Naphthalenes
Photochemistry
Biochemistry
Peroxide
Catalysis
Dioxygenases
chemistry.chemical_compound
Electron transfer
Multienzyme Complexes
Superoxides
Dioxygenase
Hydrogen peroxide
Molecular Biology
Ferredoxin
biology
Chemistry
Reducing equivalent
Active site
Hydrogen Peroxide
Cell Biology
Oxygen
Models, Chemical
Oxygenases
biology.protein
Subjects
Details
- ISSN :
- 00219258
- Volume :
- 278
- Database :
- OpenAIRE
- Journal :
- Journal of Biological Chemistry
- Accession number :
- edsair.doi.dedup.....23efd0f5e7473bd27e847ea21ffa1f58
- Full Text :
- https://doi.org/10.1074/jbc.m209604200