Back to Search Start Over

Addition of a Fluoride-containing Radiopacifier Improves Micromechanical and Biological Characteristics of Modified Calcium Silicate Cements

Authors :
Annika vom Scheidt
Vukoman Jokanović
Petar Milovanovic
Michael Hahn
Djordje Antonijevic
Danilo Kisić
Marija Djuric
Danimir Jevremovic
Bozana Colovic
Björn Busse
Anke Jeschke
Michael Amling
Source :
Journal of Endodontics
Publication Year :
2015
Publisher :
Elsevier BV, 2015.

Abstract

Introduction Calcium silicate cements (CSCs) with the addition of nanohydroxyapatite and calcium carbonate play a critical role in dental applications. To further improve their properties, particularly radiopacity and biointeractivity, the fluoride-containing radiopacifier ytterbium trifluoride (YbF 3 ) was added to their composition, and biological and mechanical characteristics were evaluated. Methods YbF 3 was added to 3 different CSCs: cement I (CSC + calcium carbonate), cement II (CSC + nanohydroxyapatite), and Portland cement. Material characterization encompassed measurements of pH, calcium, ytterbium, and fluoride ion release; radiopacity; setting time; porosity; microindentation properties; wettability; and Fourier transform infrared spectroscopic, x-ray diffraction, and scanning electron microscopic analyses. Osteoblast- and osteoclast-like cells were grown on the materials' surface to evaluate their adherence. Results The addition of calcium carbonate, nanohydroxyapatite, and 30 wt% of YbF 3 improved radiopacity and the setting time of experimental cements. The pH values did not differ among the groups. The greatest ytterbium and fluoride releases occurred in the Portland cement + YbF 3 group. Combined x-ray diffraction and Fourier transform infrared spectroscopic analysis showed the presence of calcium hydroxide and calcium silicate hydrates. In addition, the presence of calcium ytterbium fluoride and ytterbium oxide proved that YbF 3 reacted with cement compounds. Wettability of cement I + YbF 3 was superior to other formulations, but its porosity and microindentation properties were weaker than in the Portland cement + YbF 3 mixture. Cement II + YbF 3 presented micromechanical indentation and porosity characteristics similar to the Portland-based cement formulation. Osteoclast- and osteoblast-like cells adhered to the cements' surfaces without alteration of the cell structural integrity. Conclusions YbF 3 -containing CSCs with nanostructured hydroxyapatite and calcium carbonate are well suited for dental application.

Details

ISSN :
00992399
Volume :
41
Database :
OpenAIRE
Journal :
Journal of Endodontics
Accession number :
edsair.doi.dedup.....2406f6d26b21fd60748477677bfaf114