Back to Search Start Over

Maximize Resolution or Minimize Error? Using Genotyping-By-Sequencing to Investigate the Recent Diversification of Helianthemum (Cistaceae)

Authors :
Rafael G. Albaladejo
Sara Martín-Hernanz
Arnoldo Santos-Guerra
J. Alfredo Reyes-Betancort
Encarnación Rubio
María Olangua-Corral
Mario Fernández-Mazuecos
Abelardo Aparicio
Ministerio de Economía y Competitividad (España)
Universidad de Sevilla. Departamento de Biología Vegetal y Ecología
Source :
Digital.CSIC. Repositorio Institucional del CSIC, instname, idUS. Depósito de Investigación de la Universidad de Sevilla, Digital.CSIC: Repositorio Institucional del CSIC, Consejo Superior de Investigaciones Científicas (CSIC), Frontiers in Plant Science, Frontiers in Plant Science, Vol 10 (2019)
Publication Year :
2019
Publisher :
Frontiers Media, 2019.

Abstract

A robust phylogenetic framework, in terms of extensive geographical and taxonomic sampling, well-resolved species relationships and high certainty of tree topologies and branch length estimations, is critical in the study of macroevolutionary patterns. Whereas Sanger sequencing-based methods usually recover insufficient phylogenetic signal, especially in recently diversified lineages, reduced-representation sequencing methods tend to provide well-supported phylogenetic relationships, but usually entail remarkable bioinformatic challenges due to the inherent trade-off between the number of SNPs and the magnitude of associated error rates. The genus Helianthemum (Cistaceae) is a species-rich and taxonomically complex Palearctic group of plants that diversified mainly since the Upper Miocene. It is a challenging case study since previous attempts using Sanger sequencing were unable to resolve the intrageneric phylogenetic relationships. Aiming to obtain a robust phylogenetic reconstruction based on genotyping-by-sequencing (GBS), we established a rigorous methodological workflow in which we i) explored how variable settings during dataset assembly have an impact on error rates and on the degree of resolution under concatenation and coalescent approaches, ii) assessed the effect of two extreme parameter configurations (minimizing error rates vs. maximizing phylogenetic resolution) on tree topology and branch lengths, and iii) evaluated the effects of these two configurations on estimates of divergence times and diversification rates. Our analyses produced highly supported topologically congruent phylogenetic trees for both configurations. However, minimizing error rates did produce more reliable branch lengths, critically affecting the accuracy of downstream analyses (i.e. divergence times and diversification rates). In addition to recommending a revision of intrageneric systematics, our results enabled us to identify three highly diversified lineages in Helianthemum in contrasting geographical areas and ecological conditions, which started radiating in the Upper Miocene.<br />This research was funded by grants CGL2014-52459-P and CGL2017-82465-P from the Spanish Ministerio de Economía y Competitividad to AA. SM-H is currently funded by the Spanish Secretaría de Estado de Investigación, Desarrollo e Innovación (FPI fellowship, 2015). MF-M was supported by a Juan de la Cierva fellowship (Spanish Ministerio de Economía, Industria y Competitividad, reference IJCI-2015-23459

Details

Database :
OpenAIRE
Journal :
Digital.CSIC. Repositorio Institucional del CSIC, instname, idUS. Depósito de Investigación de la Universidad de Sevilla, Digital.CSIC: Repositorio Institucional del CSIC, Consejo Superior de Investigaciones Científicas (CSIC), Frontiers in Plant Science, Frontiers in Plant Science, Vol 10 (2019)
Accession number :
edsair.doi.dedup.....243aa4359684b5560f3596559aa5c0e3