Back to Search Start Over

AUDyC Neural Network using a new Gaussian Densities Merge Mechanism

Authors :
Stéphane Lecoeuche
Habiboulaye Amadou Boubacar
S. Maouche
École des Mines de Douai (Mines Douai EMD)
Institut Mines-Télécom [Paris] (IMT)
Université Lille 1 - Département Sciences de l'éducation et de la formation (CUEEP SEFA)
Université de Lille, Sciences et Technologies
Ecole nationale supérieure Mines-Télécom Lille Douai (IMT Lille Douai)
LAGIS-OSL
Laboratoire d'Automatique, Génie Informatique et Signal (LAGIS)
Université de Lille, Sciences et Technologies-Ecole Centrale de Lille-Centre National de la Recherche Scientifique (CNRS)-Université de Lille, Sciences et Technologies-Ecole Centrale de Lille-Centre National de la Recherche Scientifique (CNRS)
Source :
Adaptive and Natural Computing Algorithms ISBN: 3211249346, 7th International Conference on Adaptive and Natural Computing Algorithms, 7th International Conference on Adaptive and Natural Computing Algorithms, Mar 2005, Coimbra, Portugal
Publication Year :
2005
Publisher :
Springer-Verlag, 2005.

Abstract

In the context of evolutionary data classification, dynamical modeling techniques are useful to continuously learn clusters models. Dedicated to on-line clustering, the AUDyC (Auto-adaptive and Dynamical Clustering) algorithm is an unsupervised neural network with auto-adaptive abilities in nonstationary environment. These particular abilities are based on specific learning rules that are developed into three stages: “Classification”, “Evaluation” and “Fusion”. In this paper, we propose a new densities merge mechanism to improve the “Fusion” stage in order to avoid some local optima drawbacks of Gaussian fitting. The novelty of our approach is to use an ambiguity rule of fuzzy modelling with new merge acceptance criteria. Our approach can be generalized to any type of fuzzy classification method using Gaussian models. Some experiments are presented to show the efficiency of our approach to circumvent to AUDyC NN local optima problems.

Details

ISBN :
978-3-211-24934-5
3-211-24934-6
ISBNs :
9783211249345 and 3211249346
Database :
OpenAIRE
Journal :
Adaptive and Natural Computing Algorithms ISBN: 3211249346, 7th International Conference on Adaptive and Natural Computing Algorithms, 7th International Conference on Adaptive and Natural Computing Algorithms, Mar 2005, Coimbra, Portugal
Accession number :
edsair.doi.dedup.....2539484d9caa75c3f16394539df4233f
Full Text :
https://doi.org/10.1007/3-211-27389-1_37