Back to Search
Start Over
Development of machine learning algorithms for prediction of discharge disposition after elective inpatient surgery for lumbar degenerative disc disorders
- Source :
- Neurosurgical focus, 45(5)
- Publication Year :
- 2018
-
Abstract
- OBJECTIVEIf not anticipated and prearranged, hospital stay can be prolonged while the patient awaits placement in a rehabilitation unit or skilled nursing facility following elective spine surgery. Preoperative prediction of the likelihood of postoperative discharge to any setting other than home (i.e., nonroutine discharge) after elective inpatient spine surgery would be helpful in terms of decreasing hospital length of stay. The purpose of this study was to use machine learning algorithms to develop an open-access web application for preoperative prediction of nonroutine discharges in surgery for elective inpatient lumbar degenerative disc disorders.METHODSThe American College of Surgeons National Surgical Quality Improvement Program was queried to identify patients who underwent elective inpatient spine surgery for lumbar disc herniation or lumbar disc degeneration between 2011 and 2016. Four machine learning algorithms were developed to predict nonroutine discharge and the best algorithm was incorporated into an open-access web application.RESULTSThe rate of nonroutine discharge for 26,364 patients who underwent elective inpatient surgery for lumbar degenerative disc disorders was 9.28%. Predictive factors selected by random forest algorithms were age, sex, body mass index, fusion, level, functional status, extent and severity of comorbid disease (American Society of Anesthesiologists classification), diabetes, and preoperative hematocrit level. On evaluation in the testing set (n = 5273), the neural network had a c-statistic of 0.823, calibration slope of 0.935, calibration intercept of 0.026, and Brier score of 0.0713. On decision curve analysis, the algorithm showed greater net benefit for changing management over all threshold probabilities than changing management on the basis of the American Society of Anesthesiologists classification alone or for all patients or for no patients. The model can be found here: https://sorg-apps.shinyapps.io/discdisposition/.CONCLUSIONSMachine learning algorithms show promising results on internal validation for preoperative prediction of nonroutine discharges. If found to be externally valid, widespread use of these algorithms via the open-access web application by healthcare professionals may help preoperative risk stratification of patients undergoing elective surgery for lumbar degenerative disc disorders.
- Subjects :
- Adult
Male
medicine.medical_specialty
Degenerative disc
Intervertebral Disc Degeneration
Machine learning
computer.software_genre
03 medical and health sciences
spine surgery
0302 clinical medicine
Spine surgery
Lumbar
value-based care
Predictive Value of Tests
medicine
Humans
030212 general & internal medicine
Elective surgery
Aged
Lumbar Vertebrae
business.industry
Discharge disposition
General Medicine
Middle Aged
Patient Discharge
Surgery
discharge disposition
predictive analytics
machine learning
Brier score
Elective Surgical Procedures
Female
Neurology (clinical)
Lumbar disc herniation
Artificial intelligence
business
computer
Body mass index
Algorithm
030217 neurology & neurosurgery
Algorithms
Subjects
Details
- Language :
- English
- Database :
- OpenAIRE
- Journal :
- Neurosurgical focus, 45(5)
- Accession number :
- edsair.doi.dedup.....25adf80aada420a91d4ca8ec65e593b6