Back to Search Start Over

Conformational Stability Adaptation of a Double-Stranded RNA-Binding Domain to Transfer RNA Ligand

Authors :
Sophie Sacquin-Mora
Pierre Barraud
Ludovic Pecqueur
Marc Fontecave
Carine Tisné
Djemel Hamdane
Charles Bou-Nader
Chaire Chimie des processus biologiques
Laboratoire de Chimie des Processus Biologiques (LCPB)
Collège de France (CdF (institution))-Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Collège de France (CdF (institution))-Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)
Laboratoire de Physico-chimie des Métaux en Biologie (LPCMB)
Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Joseph Fourier - Grenoble 1 (UJF)
Laboratoire de cristallographie et RMN biologiques (LCRB - UMR 8015)
Université Paris Descartes - Paris 5 (UPD5)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)
Expression Génétique Microbienne (EGM (UMR_8261 / FRE_3630))
Institut de biologie physico-chimique (IBPC (FR_550))
Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)
Laboratoire de biochimie théorique [Paris] (LBT (UPR_9080))
Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Institut de biologie physico-chimique (IBPC (FR_550))
Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)
Collège de France - Chaire Chimie des processus biologiques
Université Joseph Fourier - Grenoble 1 (UJF)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS)
Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)
Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)
Collège de France (CdF)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)
Centre National de la Recherche Scientifique (CNRS)-Université Paris Descartes - Paris 5 (UPD5)
Centre National de la Recherche Scientifique (CNRS)-Collège de France (CdF)-Université Pierre et Marie Curie - Paris 6 (UPMC)
Institut de biologie physico-chimique (IBPC)
Université Paris Diderot - Paris 7 (UPD7)-Institut de biologie physico-chimique (IBPC)
Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)
Source :
Biochemistry, Biochemistry, American Chemical Society, 2019, ⟨10.1021/acs.biochem.9b00111⟩, Biochemistry, 2019, ⟨10.1021/acs.biochem.9b00111⟩
Publication Year :
2019
Publisher :
HAL CCSD, 2019.

Abstract

The double-stranded RNA-binding domain (dsRBD) is a broadly distributed domain among RNA-maturing enzymes. Although this domain recognizes dsRNA's structures via a conserved canonical structure adopting an α1-β1β2β3-α2 topology, several dsRBDs can accommodate discrete structural extensions expanding further their functional repertoire. How these structural elements engage cooperative communications with the canonical structure and how they contribute to the dsRBD's overall folding are poorly understood. Here, we addressed these issues using the dsRBD of human dihydrouridine synthase-2 (hDus2) (hDus2-dsRBD) as a model. This dsRBD harbors N- and C-terminal extensions, the former being directly involved in the recognition of tRNA substrate of hDus2. These extensions engage residues that form a long-range hydrophobic network (LHN) outside the RNA-binding interface. We show by coarse-grain Brownian dynamics that the Nt-extension and its residues F359 and Y364 rigidify the major folding nucleus of the canonical structure via an indirect effect. hDus2-dsRBD unfolds following a two-state cooperative model, whereas both F359A and Y364A mutants, designed to destabilize this LHN, unfold irreversibly. Structural and computational analyses show that these mutants are unstable due to an increase in the dynamics of the two extensions favoring solvent exposure of α2-helix and weakening the main folding nucleus rigidity. This LHN appears essential for maintaining a thermodynamic stability of the overall system and eventually a functional conformation for tRNA recognition. Altogether, our findings suggest that functional adaptability of extended dsRBDs is promoted by a cooperative hydrophobic coupling between the extensions acting as effectors and the folding nucleus of the canonical structure.

Details

Language :
English
ISSN :
00062960 and 15204995
Database :
OpenAIRE
Journal :
Biochemistry, Biochemistry, American Chemical Society, 2019, ⟨10.1021/acs.biochem.9b00111⟩, Biochemistry, 2019, ⟨10.1021/acs.biochem.9b00111⟩
Accession number :
edsair.doi.dedup.....25d8d8973c445f383f9f49813c6e5617
Full Text :
https://doi.org/10.1021/acs.biochem.9b00111⟩