Sorry, I don't understand your search. ×
Back to Search Start Over

Embedded Constrained Feature Construction for High-Energy Physics Data Classification

Authors :
Cherrier, No��lie
Defurne, Maxime
Poli, Jean-Philippe
Sabati��, Franck
Laboratoire d'Intégration des Systèmes et des Technologies (LIST)
Université Paris-Saclay-Direction de Recherche Technologique (CEA) (DRT (CEA))
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)
Institut de Recherches sur les lois Fondamentales de l'Univers (IRFU)
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay
Direction de Recherche Technologique (CEA) (DRT (CEA))
Intelligence Artificielle et Apprentissage Automatique (LI3A)
Département Métrologie Instrumentation & Information (DM2I)
Laboratoire d'Intégration des Systèmes et des Technologies (LIST (CEA))
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Technologique (CEA) (DRT (CEA))
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Laboratoire d'Intégration des Systèmes et des Technologies (LIST (CEA))
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay
Source :
33rd Annual Conference on Neural Information Processing Systems, 33rd Annual Conference on Neural Information Processing Systems, Dec 2019, Vancouver, Canada
Publication Year :
2019

Abstract

Before any publication, data analysis of high-energy physics experiments must be validated. This validation is granted only if a perfect understanding of the data and the analysis process is demonstrated. Therefore, physicists prefer using transparent machine learning algorithms whose performances highly rely on the suitability of the provided input features. To transform the feature space, feature construction aims at automatically generating new relevant features. Whereas most of previous works in this area perform the feature construction prior to the model training, we propose here a general framework to embed a feature construction technique adapted to the constraints of high-energy physics in the induction of tree-based models. Experiments on two high-energy physics datasets confirm that a significant gain is obtained on the classification scores, while limiting the number of built features. Since the features are built to be interpretable, the whole model is transparent and readable.<br />Accepted at the NeurIPS 2019 workshop on Machine Learning for the Physical Sciences (https://ml4physicalsciences.github.io)

Details

Language :
English
Database :
OpenAIRE
Journal :
33rd Annual Conference on Neural Information Processing Systems, 33rd Annual Conference on Neural Information Processing Systems, Dec 2019, Vancouver, Canada
Accession number :
edsair.doi.dedup.....25f6b94b0155d3dc727e834da270453d