Back to Search
Start Over
Development of microglia in the cerebral white matter of the human fetus and infant
- Source :
- The Journal of Comparative Neurology. 497:199-208
- Publication Year :
- 2006
- Publisher :
- Wiley, 2006.
-
Abstract
- Although microglial activation may be an initial beneficial response to a variety of insults, prolonged activation can release toxic substances and lead to cell death. Microglial activation secondary to hypoxia-ischemia and/or infection in immature cerebral white matter is important in the pathogenesis of periventricular leukomalacia (PVL), the major pathological substrate of cerebral palsy in the premature infant. We hypothesize that a transient overexpression in activated microglial density occurs normally in the cerebral white matter of the human fetus during the peak window of vulnerability for PVL. Such an increase could render this region susceptible to insults that cause prolonged microglial activation, as conceptualized in PVL. To examine the developmental profile of microglia in the human fetus and infant brain, immunocytochemistry with microglial specific markers were used in 23 control (non-PVL) cases ranging from 20 to 183 postconceptional (PC) weeks. Tomato lectin, used to identify microglial morphology, revealed that the cerebral white matter of the human fetus and infant is densely populated with intermediate and amoeboid microglia; the latter is indicative of an activated state. Quantitative analysis with CD68 showed increased density of activated microglia in the cerebral white matter of the fetus (
- Subjects :
- Pathology
medicine.medical_specialty
Immunocytochemistry
Antigens, Differentiation, Myelomonocytic
Cell Count
Inflammation
Biology
Pathogenesis
Fetus
Antigens, CD
Cortex (anatomy)
medicine
Humans
Cerebral Cortex
Periventricular leukomalacia
Microglia
General Neuroscience
Age Factors
Infant, Newborn
Nuclear Proteins
medicine.disease
Immunohistochemistry
medicine.anatomical_structure
Cerebral cortex
Trans-Activators
Plant Lectins
medicine.symptom
Subjects
Details
- ISSN :
- 10969861 and 00219967
- Volume :
- 497
- Database :
- OpenAIRE
- Journal :
- The Journal of Comparative Neurology
- Accession number :
- edsair.doi.dedup.....26712ba70eecd6bc62fc867db2f699e4
- Full Text :
- https://doi.org/10.1002/cne.20991