Back to Search Start Over

Colouring Edges with many Colours in Cycles

Authors :
Xuding Zhu
Jaroslav Nešetřil
P. Ossona de Mendez
Department of Applied Mathematics (KAM) (KAM)
Univerzita Karlova v Praze
Centre d'Analyse et de Mathématique sociales (CAMS)
École des hautes études en sciences sociales (EHESS)-Centre National de la Recherche Scientifique (CNRS)
Department of Mathematics [Hangzhou]
Zhejiang University
European Project: LEA STRUCO
Source :
Journal of Combinatorial Theory, Series B, Journal of Combinatorial Theory, Series B, Elsevier, 2014, 109, pp.102-119. ⟨10.1016/j.jctb.2014.06.002⟩, Journal of Combinatorial Theory, Series B, 2014, 109, pp.102-119. ⟨10.1016/j.jctb.2014.06.002⟩
Publication Year :
2014
Publisher :
HAL CCSD, 2014.

Abstract

International audience; The arboricity of a graph G is the minimum number of colours needed to colour the edges of G so that every cycle gets at least two colours. Given a positive integer p, we define the generalized p-arboricity Arb_p(G) of a graph G as the minimum number of colours needed to colour the edges of a multigraph G in such a way that every cycle C gets at least min(|C|; p + 1) colours. In the particular case where G has girth at least p + 1, Arb_p(G) is the minimum size of a partition of the edge set of G such that the union of any p parts induce a forest. If we require further that the edge colouring be proper, i.e., adjacent edges receive distinct colours, then the minimum number of colours needed is the generalized p-acyclic edge chromatic number of G. In this paper, we relate the generalized p-acyclic edge chromatic numbers and the generalized p-arboricities of a graph G to the density of the multigraphs having a shallow subdivision as a subgraph of G.

Details

Language :
English
ISSN :
00958956 and 10960902
Database :
OpenAIRE
Journal :
Journal of Combinatorial Theory, Series B, Journal of Combinatorial Theory, Series B, Elsevier, 2014, 109, pp.102-119. ⟨10.1016/j.jctb.2014.06.002⟩, Journal of Combinatorial Theory, Series B, 2014, 109, pp.102-119. ⟨10.1016/j.jctb.2014.06.002⟩
Accession number :
edsair.doi.dedup.....26daab02f33825a9da04220fe4018765
Full Text :
https://doi.org/10.1016/j.jctb.2014.06.002⟩