Back to Search Start Over

Effects of functional CYP2C8,CYP2C9,CYP3A5,and ABCB1 genetic variants on the pharmacokinetics of insulin sensitizer pioglitazone in Chinese Han individuals

Authors :
Min-Ji Wei
Guang-Zhao Qi
Guo-Liang Zhang
Hui-Min Qi
Xin Wang
Ya-Qing Lou
Pu Zhang
Sheng-Ju Yin
Pu Li
Yuan Lu
Chuang Lu
Source :
Pharmacogenetics and Genomics. 27:125-134
Publication Year :
2017
Publisher :
Ovid Technologies (Wolters Kluwer Health), 2017.

Abstract

Pioglitazone is a thiazolidinedione antihyperglycemic drug with insulin-sensitizing properties. We investigated whether the variant genotypes of cytochrome P450 2C8 (CYP2C8), CYP2C9, CYP3A5 and transporter ABCB1 influence the pharmacokinetic phenotype of the substrate pioglitazone in Chinese individuals.Single-nucleotide polymorphisms were determined by the PCR-restriction fragment length polymorphism method in 244 (CYP2C8 and CYP2C9) healthy Chinese Han individuals. After a single oral dose of 30 mg pioglitazone, the plasma concentrations of the parent drug and of two major active metabolites M-III and M-IV were measured using a validated LC-MS/MS in 21 (genotyping CYP3A5 and ABCB1) of these 244 volunteers.The results confirmed that the unique frequencies of CYP2C8*2 (0.0%), CYP2C8*3 (0.0%), and CYP2C9*2 (0.0%) alleles were significantly different from those reported in Whites and Africans, and there were only 10 variant CYP2C9*1/*3 heterozygous (CYP2C9*3 carriers) among 244 Chinese individuals. These results were similar to those reported in Asian ethnic populations, including the Chinese. Unexpectedly, the pioglitazone AUC0-48 in CYP2C9*3 carriers was lower (50.8%), whereas the AUC0-48 ratios of metabolites M-III/pioglitazone and M-IV/pioglitazone increased to 134.3 and 155.8%, respectively, compared with the wild-type CYP2C9*1/*1 homozygous. Moreover, this phenomenon was not observed in individuals with genetic variants of CYP3A5*3 and ABCB1 (C1236T).The present research suggests that the CYP2C8, CYP3A5, and ABCB1 genes play no significant role in the interindividual variation of pioglitazone pharmacokinetics, whereas CYP2C9*3 carriers are likely to accelerate the metabolism of this antidiabetic drug in the Chinese Han ethnic population.

Details

ISSN :
17446872
Volume :
27
Database :
OpenAIRE
Journal :
Pharmacogenetics and Genomics
Accession number :
edsair.doi.dedup.....26e7d3a1bd571d81828a21bed5013367