Back to Search
Start Over
Selective dephosphorylation by PP2A-B55 directs the meiosis I-meiosis II transition in oocytes
- Source :
- eLife, eLife, Vol 10 (2021)
- Publication Year :
- 2021
- Publisher :
- eLife Sciences Publications, Ltd, 2021.
-
Abstract
- Meiosis is a specialized cell cycle that requires sequential changes to the cell division machinery to facilitate changing functions. To define the mechanisms that enable the oocyte-to-embryo transition, we performed time-course proteomics in synchronized sea star oocytes from prophase I through the first embryonic cleavage. Although we found that protein levels were broadly stable, our analysis reveals that dynamic waves of phosphorylation underlie each meiotic stage. We found that the phosphatase PP2A-B55 is reactivated at the meiosis I/meiosis II (MI/MII) transition, resulting in the preferential dephosphorylation of threonine residues. Selective dephosphorylation is critical for directing the MI/MII transition as altering PP2A-B55 substrate preferences disrupts key cell cycle events after MI. In addition, threonine to serine substitution of a conserved phosphorylation site in the substrate INCENP prevents its relocalization at anaphase I. Thus, through its inherent phospho-threonine preference, PP2A-B55 imposes specific phosphoregulated behaviors that distinguish the two meiotic divisions.
- Subjects :
- patiria miniata
QH301-705.5
Science
General Biochemistry, Genetics and Molecular Biology
Dephosphorylation
Starfish
proteomics
Meiosis
Animals
Biology (General)
phosphatases
Phosphorylation
Meiosis I/meiosis II transition
Anaphase
General Immunology and Microbiology
Embryonic cleavage
INCENP
Chemistry
General Neuroscience
Meiosis II
General Medicine
Cell Biology
Phosphoric Monoester Hydrolases
Cell biology
Oocytes
Medicine
Other
Research Article
Subjects
Details
- Language :
- English
- ISSN :
- 2050084X
- Volume :
- 10
- Database :
- OpenAIRE
- Journal :
- eLife
- Accession number :
- edsair.doi.dedup.....26e98d10f3863e0ddccd5c7dad17bb16