Back to Search
Start Over
Mono‐, Di‐, and Tri‐Valent Cation Doped BiFe0.95Mn0.05O3 Nanoparticles: Ferroelectric Photocatalysts
- Publication Year :
- 2022
- Publisher :
- Humboldt-Universität zu Berlin, 2022.
-
Abstract
- The ferroelectricity of multivalent codoped Bismuth ferrite (BiFeO3; BFO) nanoparticles (NPs) is revealed and utilized for photocatalysis, exploiting their narrow electronic bandgap. The photocatalytic activity of ferroelectric photocatalysts BiFe0.95Mn0.05O3 (BFM) NPs and mono‐, di‐, or tri‐valent cations (Ag+, Ca2+, Dy3+; MDT) coincorporated BFM NPs are studied under ultrasonication and in acidic conditions. It is found that such doping enhances the photocatalytic activity of the ferroelectric NPs approximately three times. The correlation of the photocatalytic activity with structural, optical, and electrical properties of the doped NPs is established. The increase of spontaneous polarization by the mono‐ and tri‐valent doping is one of the major factors in enhancing the photocatalytic performance along with other factors such as stronger light absorption in the visible range, low recombination rate of charge carriers, and larger surface area of NPs. A‐site doping of BFO NPs by divalent elements suppresses the polarization, whereas trivalent (Dy3+) and monovalent (Ag+) cations provide an increase of polarization. The depolarization field in these single domain NPs acts as a driving force to mitigate recombination of the photoinduced charge carriers.<br />The ferroelectricity of Ag/Ca/Dy‐doped BiFe0.95Mn0.05O3 nanoparticles are utilized for photocatalysis under ultrasonic conditions. The mitigated recombination of photoinduced charge‐carriers in the nanoparticles due to the depolarization field, is one of the important factors for the photocatalytic rate. The piezoresponse becomes a crucial parameter under ultrasonic conditions for ferroelectric photocatalysts. The pink dye (rhodamine B) is photodegraded using MDT doped nanoparticles. The ease of photoinduced charge carrier separation in single domain nanoparticles using the depolarization field as a driving force is shown. image
Details
- Language :
- English
- Database :
- OpenAIRE
- Accession number :
- edsair.doi.dedup.....26f0881982d0789a314b555dffb49262
- Full Text :
- https://doi.org/10.18452/25781