Back to Search Start Over

Bayesian Unmixing of Hyperspectral Image Sequence With Composite Priors for Abundance and Endmember Variability

Authors :
Qian Du
Jocelyn Chanussot
Hongyi Liu
Zhihui Wei
Zebin Wu
Youkang Lu
Nanjing University of Science and Technology (NJUST)
Mississippi State University [Mississippi]
GIPSA - Signal Images Physique (GIPSA-SIGMAPHY)
GIPSA Pôle Sciences des Données (GIPSA-PSD)
Grenoble Images Parole Signal Automatique (GIPSA-lab)
Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )
Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )
Université Grenoble Alpes (UGA)-Grenoble Images Parole Signal Automatique (GIPSA-lab)
Université Grenoble Alpes (UGA)
Apprentissage de modèles à partir de données massives (Thoth)
Inria Grenoble - Rhône-Alpes
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire Jean Kuntzmann (LJK)
Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )
Source :
IEEE Transactions on Geoscience and Remote Sensing, IEEE Transactions on Geoscience and Remote Sensing, 2022, 60, pp.5503515. ⟨10.1109/TGRS.2021.3064708⟩
Publication Year :
2022
Publisher :
Institute of Electrical and Electronics Engineers (IEEE), 2022.

Abstract

International audience; A hyperspectral image sequence can be obtained at different time in the same region from a hyperspectral sensor. The environmental change usually leads to variation in endmember reflectance, which has an important influence on unmixing process. In this article, a Bayesian unmixing model considering spectral variability for hyperspectral sequence is proposed, in which composite prior distributions of abundance and endmember variability are developed. The abundance priors consider the continuity of abundance in the temporal and spatial domains, simultaneously. Specifically, in the spatial domain, a data-adaptive variance of the abundance prior distribution is put forward based on local spatial difference. Moreover, the priors of endmember variability in temporal continuity and spectral smoothness are also exploited. Finally, a joint posterior distribution is obtained by the likelihood function and the parameter prior distributions, which can be calculated by the Markov chain Monte Carlo (MCMC) algorithm. Experiments on synthetic and real data sets demonstrate the effectiveness of the proposed approach in terms of abundance, endmember, and its variability estimation accuracy.

Details

ISSN :
15580644 and 01962892
Volume :
60
Database :
OpenAIRE
Journal :
IEEE Transactions on Geoscience and Remote Sensing
Accession number :
edsair.doi.dedup.....2715c6a3ab6eea2296381c586e029c40
Full Text :
https://doi.org/10.1109/tgrs.2021.3064708