Back to Search Start Over

A framework for information dissemination in social networks using Hawkes processes

Authors :
Tijani Chahed
Eitan Altman
J.C. Louzada Pinto
Méthodes et modèles pour les réseaux (METHODES-SAMOVAR)
Services répartis, Architectures, MOdélisation, Validation, Administration des Réseaux (SAMOVAR)
Institut Mines-Télécom [Paris] (IMT)-Télécom SudParis (TSP)-Institut Mines-Télécom [Paris] (IMT)-Télécom SudParis (TSP)
Département Réseaux et Services de Télécommunications (RST)
Institut Mines-Télécom [Paris] (IMT)-Télécom SudParis (TSP)
Centre National de la Recherche Scientifique (CNRS)
Laboratory of Information, Network and Communication Sciences (LINCS)
Institut Mines-Télécom [Paris] (IMT)-Institut National de Recherche en Informatique et en Automatique (Inria)-Université Pierre et Marie Curie - Paris 6 (UPMC)
COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)
Models for the performance analysis and the control of networks (MAESTRO)
Inria Sophia Antipolis - Méditerranée (CRISAM)
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)
Département Réseaux et Services de Télécommunications (TSP - RST)
Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut National de Recherche en Informatique et en Automatique (Inria)-Institut Mines-Télécom [Paris] (IMT)
Source :
Performance Evaluation, Performance Evaluation, Elsevier, 2016, 103, pp.86-107. ⟨10.1016/j.peva.2016.06.004⟩, Performance Evaluation, 2016, 103, pp.86-107. ⟨10.1016/j.peva.2016.06.004⟩
Publication Year :
2016
Publisher :
HAL CCSD, 2016.

Abstract

International audience; We define in this paper a general Hawkes-based framework to model information diffusion in social networks. The proposed framework takes into consideration the hidden interactions between users as well as the interactions between contents and social networks, and can also accommodate dynamic social networks and various temporal effects of the diffusion, which provides a complete analysis of the hidden influences in social networks. This framework can be combined with topic modeling, for which modified collapsed Gibbs sampling and variational Bayes techniques are derived. We provide an estimation algorithm based on nonnegative tensor factorization techniques, which together with a dimensionality reduction argument are able to discover , in addition, the latent community structure of the social network. At last, we provide numerical examples from real-life networks: a Game of Thrones and a MemeTracker datasets.

Details

Language :
English
ISSN :
01665316
Database :
OpenAIRE
Journal :
Performance Evaluation, Performance Evaluation, Elsevier, 2016, 103, pp.86-107. ⟨10.1016/j.peva.2016.06.004⟩, Performance Evaluation, 2016, 103, pp.86-107. ⟨10.1016/j.peva.2016.06.004⟩
Accession number :
edsair.doi.dedup.....272a0b3b7edfa06349a2c983b8a4442f