Back to Search Start Over

Matrices A such that A^{s+1}R = RA* with R^k = I

Authors :
Leila Lebtahi
Minerva Catral
Jeffrey L. Stuart
Néstor Thome
Source :
Catral, Minerva Lebtahi, Leila Stuart, Jeffrey Thome, Néstor 2018 Matrices A such that A^{s+1}R = RA* with R^k = I Linear Algebra and its Applications 552 85 104, RODERIC. Repositorio Institucional de la Universitat de Valéncia, instname
Publication Year :
2018

Abstract

[EN] We study matrices A is an element of C-n x n such that A(s+1)R = RA* where R-k = I-n, and s, k are nonnegative integers with k >= 2; such matrices are called {R, s+1, k, *}-potent matrices. The s = 0 case corresponds to matrices such that A = RA* R-1 with R-k = I-n, and is studied using spectral properties of the matrix R. For s >= 1, various characterizations of the class of {R, s + 1, k, *}-potent matrices and relationships between these matrices and other classes of matrices are presented. (C) 2018 Elsevier Inc. All rights reserved.<br />The second and fourth authors have been partially supported by Ministerio de Economia y Competitividad of Spain (Grant MTM2013-43678-P and Red de Excelencia Grant MTM2017-90682-REDT).

Details

Database :
OpenAIRE
Journal :
Catral, Minerva Lebtahi, Leila Stuart, Jeffrey Thome, Néstor 2018 Matrices A such that A^{s+1}R = RA* with R^k = I Linear Algebra and its Applications 552 85 104, RODERIC. Repositorio Institucional de la Universitat de Valéncia, instname
Accession number :
edsair.doi.dedup.....27352f780034a13f85caa1ed56abb991