Back to Search
Start Over
The hepatitis nucleocapsid as a vaccine carrier moiety
- Source :
- Annals of the New York Academy of Sciences. 754
- Publication Year :
- 1995
-
Abstract
- The "carrier effect," defined as the provision of T cell recognition sites physically linked to B cell epitopes in order to provide Th cell function for antibody synthesis, is well known. Peptides, proteins, and more recently particulate protein antigens have been used for this purpose. The hepatitis B core antigen represents a highly immunogenic antigen in humans as well as in experimental animal models. Studies in mice have provided insight into this enhanced immunogenicity. For example, HBcAg directly activates B cells (i.e., T cell independence), HBcAg elicits strong T cell responses, and HBcAg is efficiently processed and presented by antigen presenting cells (APCs). These characteristics suggested that HBcAg may be an ideal carrier moiety for B cell epitopes requiring additional Th cell function. Therefore, a number of HBV and non-HBV B cell epitopes have been chemically linked or fused by recombinant methods to HBcAg as a method to increase immunogenicity with significant success. We have designed bacterial expression vectors that allow insertion of heterologous B cell epitopes at various positions within HBcAg particles and permit efficient purification of hybrid HBcAg particles. Studies of positional effects have demonstrated that an internal insertion into a dominant HBcAg-specific B cell site represents a superior location for enhanced antibody production. Immunogenicity studies have been extended to protection against experimental challenge in several systems. For example, a malaria CS repeat sequence derived from P. berghei was inserted into HBcAg at the internal site, and purified hybrid HBcAg/CS particles were highly immunogenic and protected 100% of experimentally challenged BALB/c mice. This system has also been exploited for purposes of oral vaccination by expressing genes coding for hybrid HBcAg particles in live, avirulent vaccine strains of Salmonella species.
- Subjects :
- Hepatitis B virus
T cell
T-Lymphocytes
Molecular Sequence Data
Protozoan Proteins
Administration, Oral
Antigen-Presenting Cells
Mice, Inbred Strains
Lymphocyte Activation
General Biochemistry, Genetics and Molecular Biology
Epitope
Epitopes
Mice
Structure-Activity Relationship
Viral Proteins
Capsid
History and Philosophy of Science
Antigen
medicine
Animals
Amino Acid Sequence
Antigen-presenting cell
B cell
B-Lymphocytes
Vaccines
Vaccines, Synthetic
biology
Base Sequence
Chemistry
General Neuroscience
Immunogenicity
virus diseases
Virology
Hepatitis B Core Antigens
digestive system diseases
HBcAg
medicine.anatomical_structure
biology.protein
Antibody
Subjects
Details
- ISSN :
- 00778923
- Volume :
- 754
- Database :
- OpenAIRE
- Journal :
- Annals of the New York Academy of Sciences
- Accession number :
- edsair.doi.dedup.....274868223713b14beec0f755c32bd920