Back to Search
Start Over
Nonlocal Delaunay surfaces
- Source :
- Dávila, J, del Pino, M, Dipierro, S & Valdinoci, E 2016, ' Nonlocal Delaunay surfaces ', Nonlinear Analysis: Theory Methods & Applications, vol. 137, pp. 357-380 . https://doi.org/10.1016/j.na.2015.10.009
- Publication Year :
- 2016
- Publisher :
- Elsevier BV, 2016.
-
Abstract
- We construct codimension 1 surfaces of any dimension that minimize a periodic nonlocal perimeter functional among surfaces that are periodic, cylindrically symmetric and decreasing. These surfaces may be seen as a nonlocal analogue of the classical Delaunay surfaces (onduloids). For small volume, most of their mass tends to be concentrated in a periodic array and the surfaces are close to a periodic array of balls (in fact, we give explicit quantitative bounds on these facts).
- Subjects :
- Small volume
Delaunay triangulation
Applied Mathematics
010102 general mathematics
Mathematical analysis
minimization problem
49Q20
Codimension
nonlocal perimeter
01 natural sciences
49Q05
010101 applied mathematics
Perimeter
35R11
Mathematics - Analysis of PDEs
Dimension (vector space)
FOS: Mathematics
0101 mathematics
Delaunay surfaces
Analysis
Analysis of PDEs (math.AP)
Mathematics
Subjects
Details
- ISSN :
- 0362546X
- Volume :
- 137
- Database :
- OpenAIRE
- Journal :
- Nonlinear Analysis
- Accession number :
- edsair.doi.dedup.....2832cf5ad691a36d36cb59f99c2c5a61
- Full Text :
- https://doi.org/10.1016/j.na.2015.10.009