Back to Search Start Over

Applying Stacking and Corpus Transformation to a Chunking Task

Authors :
Fernando Enríquez
Vicente Carrillo
Fermín L. Cruz
Víctor J. Díaz
José A. Troyano
Universidad de Sevilla. Departamento de Lenguajes y Sistemas Informáticos
Source :
Lecture Notes in Computer Science ISBN: 9783540290025, EUROCAST, idUS. Depósito de Investigación de la Universidad de Sevilla, instname, idUS: Depósito de Investigación de la Universidad de Sevilla, Universidad de Sevilla (US)
Publication Year :
2005
Publisher :
Springer Berlin Heidelberg, 2005.

Abstract

In this paper we present an application of the stacking technique to a chunking task: named entity recognition. Stacking consists in applying machine learning techniques for combining the results of different models. Instead of using several corpus or several tagger generators to obtain the models needed in stacking, we have applied three transformations to a single training corpus and then we have used the four versions of the corpus to train a single tagger generator. Taking as baseline the results obtained with the original corpus (Fβ=1 value of 81.84), our experiments show that the three transformations improve this baseline (the best one reaches 84.51), and that applying stacking also improves this baseline reaching an Fβ=1 measure of 88.43.

Details

ISBN :
978-3-540-29002-5
ISBNs :
9783540290025
Database :
OpenAIRE
Journal :
Lecture Notes in Computer Science ISBN: 9783540290025, EUROCAST, idUS. Depósito de Investigación de la Universidad de Sevilla, instname, idUS: Depósito de Investigación de la Universidad de Sevilla, Universidad de Sevilla (US)
Accession number :
edsair.doi.dedup.....283e692e6f3bb8347992c83a9adda80b
Full Text :
https://doi.org/10.1007/11556985_20