Back to Search
Start Over
ATR–Chk1–APC/CCdh1-dependent stabilization of Cdc7–ASK (Dbf4) kinase is required for DNA lesion bypass under replication stress
- Source :
- Genes & Development. 27:2459-2472
- Publication Year :
- 2013
- Publisher :
- Cold Spring Harbor Laboratory, 2013.
-
Abstract
- Cdc7 kinase regulates DNA replication. However, its role in DNA repair and recombination is poorly understood. Here we describe a pathway that stabilizes the human Cdc7–ASK (activator of S-phase kinase; also called Dbf4), its regulation, and its function in cellular responses to compromised DNA replication. Stalled DNA replication evoked stabilization of the Cdc7–ASK (Dbf4) complex in a manner dependent on ATR–Chk1-mediated checkpoint signaling and its interplay with the anaphase-promoting complex/cyclosomeCdh1 (APC/CCdh1) ubiquitin ligase. Mechanistically, Chk1 kinase inactivates APC/CCdh1 through degradation of Cdh1 upon replication block, thereby stabilizing APC/CCdh1 substrates, including Cdc7–ASK (Dbf4). Furthermore, motif C of ASK (Dbf4) interacts with the N-terminal region of RAD18 ubiquitin ligase, and this interaction is required for chromatin binding of RAD18. Impaired interaction of ASK (Dbf4) with RAD18 disables foci formation by RAD18 and hinders chromatin loading of translesion DNA polymerase η. These findings define a novel mechanism that orchestrates replication checkpoint signaling and ubiquitin–proteasome machinery with the DNA damage bypass pathway to guard against replication collapse under conditions of replication stress.
- Subjects :
- DNA Replication
Genes, APC
Cell Cycle Proteins
Eukaryotic DNA replication
Ataxia Telangiectasia Mutated Proteins
Protein Serine-Threonine Kinases
Pre-replication complex
DNA replication factor CDT1
Replication factor C
Control of chromosome duplication
Antigens, CD
Cell Line, Tumor
Enzyme Stability
Genetics
Humans
Replication protein A
biology
DNA replication
Cadherins
Cell biology
HEK293 Cells
Checkpoint Kinase 1
biology.protein
Cancer research
Origin recognition complex
Protein Kinases
DNA Damage
HeLa Cells
Protein Binding
Signal Transduction
Research Paper
Developmental Biology
Subjects
Details
- ISSN :
- 15495477 and 08909369
- Volume :
- 27
- Database :
- OpenAIRE
- Journal :
- Genes & Development
- Accession number :
- edsair.doi.dedup.....28ee4028a10f0d6014c755a9d44ce8c0
- Full Text :
- https://doi.org/10.1101/gad.224568.113