Back to Search Start Over

Sensitivity of Numerical Predictions to the Permeability Coefficient in Simulations of Melting and Solidification Using the Enthalpy-Porosity Method

Authors :
Chris R. Kleijn
Ian Richardson
Amin Ebrahimi
Source :
Energies, 12(22), Energies, Vol 12, Iss 22, p 4360 (2019), Energies; Volume 12; Issue 22; Pages: 4360
Publication Year :
2020

Abstract

The high degree of uncertainty and conflicting literature data on the value of the permeability coefficient (also known as the mushy zone constant), which aims to dampen fluid velocities in the mushy zone and suppress them in solid regions, is a critical drawback when using the fixed-grid enthalpy-porosity technique for modelling non-isothermal phase-change processes. In the present study, the sensitivity of numerical predictions to the value of this coefficient was scrutinised. Using finite-volume based numerical simulations of isothermal and non-isothermal melting and solidification problems, the causes of increased sensitivity were identified. It was found that depending on the mushy-zone thickness and the velocity field, the solid-liquid interface morphology and the rate of phase-change are sensitive to the permeability coefficient. It is demonstrated that numerical predictions of an isothermal phase-change problem are independent of the permeability coefficient for sufficiently fine meshes. It is also shown that sensitivity to the choice of permeability coefficient can be assessed by means of an appropriately defined P\'eclet number.<br />Comment: The influence of the mushy-zone constant in simulations of melting and solidification (phase-change materials) using the enthalpy-porosity method

Details

Language :
English
ISSN :
19961073
Database :
OpenAIRE
Journal :
Energies, 12(22), Energies, Vol 12, Iss 22, p 4360 (2019), Energies; Volume 12; Issue 22; Pages: 4360
Accession number :
edsair.doi.dedup.....2975c6e99b3886a10ea2b84157b81e6d