Back to Search Start Over

Using spatial autocorrelation techniques and multi-temporal satellite data for analyzing urban sprawl

Authors :
Beniamino Murgante
Rosa Lasaponara
Maria Danese
Antonio Lanorte
Gabriele Nolè
Source :
12th International Conference on Computational Science and Its Applications (ICCSA), pp. 512–527, Salvador de Bahia, BRAZIL, JUN 18-21, 2012, info:cnr-pdr/source/autori:Nolè G., Danese M., Murgante B., Lasaponara R., Lanorte A./congresso_nome:12th International Conference on Computational Science and Its Applications (ICCSA)/congresso_luogo:Salvador de Bahia, BRAZIL/congresso_data:JUN 18-21, 2012/anno:2012/pagina_da:512/pagina_a:527/intervallo_pagine:512–527, Computational Science and Its Applications – ICCSA 2012 ISBN: 9783642311369, ICCSA (3)
Publication Year :
2012
Publisher :
Springer-Verlag, Berlin Heidelberg, DEU, 2012.

Abstract

Satellite time series offer great potential for a quantitative assessment of urban expansion, urban sprawl and for monitoring of land use changes and soil consumption. This study deals with the spatial characterization of expansion of urban areas by using spatial autocorrelation techniques applied to multi-date Thematic Mapper (TM) satellite images. The investigation focused on several very small towns close to Bari. Urban areas were extracted from NASA Landsat images acquired in 1976, 1999 and 2009, respectively. To cope with the fact that small changes have to be captured and extracted from TM multi-temporal data sets, we adopted the use of spectral indices to emphasize occurring changes, and spatial autocorrelation techniques to reveal spatial patterns. Urban areas were analyzed using both global and local autocorrelation indexes. This approach enables the characterization of pattern features of urban area expansion and it improves land use change estimation. The obtained results showed a significant urban expansion coupled with an increase of irregularity degree of border modifications from 1976 to 2009.

Details

Language :
English
ISBN :
978-3-642-31136-9
ISBNs :
9783642311369
Database :
OpenAIRE
Journal :
12th International Conference on Computational Science and Its Applications (ICCSA), pp. 512–527, Salvador de Bahia, BRAZIL, JUN 18-21, 2012, info:cnr-pdr/source/autori:Nolè G., Danese M., Murgante B., Lasaponara R., Lanorte A./congresso_nome:12th International Conference on Computational Science and Its Applications (ICCSA)/congresso_luogo:Salvador de Bahia, BRAZIL/congresso_data:JUN 18-21, 2012/anno:2012/pagina_da:512/pagina_a:527/intervallo_pagine:512–527, Computational Science and Its Applications – ICCSA 2012 ISBN: 9783642311369, ICCSA (3)
Accession number :
edsair.doi.dedup.....298f2523f094d730b056bc63e1cd289d
Full Text :
https://doi.org/10.1007/978-3-642-31137-6_39