Back to Search Start Over

Excision of Integrated Human Herpesvirus 6A Genomes Using CRISPR/Cas9 Technology

Authors :
Giulia Aimola
Darren J. Wight
Louis Flamand
Benedikt B. Kaufer
Source :
Microbiology Spectrum. 11
Publication Year :
2023
Publisher :
American Society for Microbiology, 2023.

Abstract

Human herpesviruses 6A and 6B are betaherpesviruses that can integrate their genomes into the telomeres of latently infected cells. Integration can also occur in germ cells, resulting in individuals who harbor the integrated virus in every cell of their body and can pass it on to their offspring. This condition is termed inherited chromosomally integrated HHV-6 (iciHHV-6) and affects about 1% of the human population. The integrated HHV-6A/B genome can reactivate in iciHHV-6 patients and in rare cases can also cause severe diseases including encephalitis and graft-versus-host disease. Until now, it has remained impossible to prevent virus reactivation or remove the integrated virus genome. Therefore, we developed a system that allows the removal of HHV-6A from the host telomeres using the CRISPR/Cas9 system. We used specific guide RNAs (gRNAs) targeting the direct repeat region at the ends of the viral genome to remove the virus from latently infected cells generated in vitro and iciHHV-6A patient cells. Fluorescence-activated cell sorting (FACS), quantitative PCR (qPCR), and fluorescence in situ hybridization (FISH) analyses revealed that the virus genome was efficiently excised and lost in most cells. Efficient excision was achieved with both constitutive and transient expression of Cas9. In addition, reverse transcription-qPCR (RT-qPCR) revealed that the virus genome did not reactivate upon excision. Taken together, our data show that our CRISPR/Cas9 approach allows efficient removal of the integrated virus genome from host telomeres.

Details

ISSN :
21650497
Volume :
11
Database :
OpenAIRE
Journal :
Microbiology Spectrum
Accession number :
edsair.doi.dedup.....29b0a9e8a63d90674ff3657441d07f86