Back to Search
Start Over
Universal truncation error upper bounds in irregular sampling restoration
- Publication Year :
- 2013
- Publisher :
- arXiv, 2013.
-
Abstract
- Universal (pointwise uniform and time shifted) truncation error upper bounds are presented in Whittaker--Kotel'nikov--Shannon (WKS) sampling restoration sum for Bernstein function class $B_{\pi,d}^q\,,\ q \ge 1,$ $d\in \mathbb N\,,$ when the sampled functions decay rate is unknown. The case of multidimensional irregular sampling is discussed.<br />Comment: 13 pages. This is an Author's Accepted Manuscript of an article published in the Applicable Analysis, Vol.90, No. 3-4. (2011), 595--608. [copyright Taylor & Francis], available online at: http://www.tandfonline.com/ [DOI:10.1080/00036810903437754]
- Subjects :
- Pointwise
FOS: Computer and information sciences
Truncation error (numerical integration)
94A20, 26D15 (Primary), 30D15, 41A05(Secondary)
Computer Science - Information Theory
Applied Mathematics
Information Theory (cs.IT)
Bernstein function
Sampling (statistics)
Applied mathematics
Whittaker - Kotel'nikov - Shannon sampling restoration formula
Approximation/interpolation error level
Nikolski\u{
\i}
Placherel - P\'olya inequality
Truncation error upper bound
Irregular sampling
Multidimensional sampling
Analysis
Mathematics
Subjects
Details
- Database :
- OpenAIRE
- Accession number :
- edsair.doi.dedup.....29ba55a2a8863f6097bbeb8c899b16dc
- Full Text :
- https://doi.org/10.48550/arxiv.1307.3332