Back to Search Start Over

Penicillin Induced Persistence in Chlamydia trachomatis: High Quality Time Lapse Video Analysis of the Developmental Cycle

Authors :
Omar Salim
Paul R. Lambden
Ian N. Clarke
Lesley T. Cutcliffe
Yibing Wang
David Barlow
Rachel J. Skilton
Source :
PLoS ONE, PLoS ONE, Vol 4, Iss 11, p e7723 (2009)
Publication Year :
2009
Publisher :
Public Library of Science, 2009.

Abstract

Background: Chlamydia trachomatis is a major human pathogen with a unique obligate intracellular developmental cycle that takes place inside a modified cytoplasmic structure known as an inclusion. Following entry into a cell, the infectious elementary body (EB) differentiates into a non - infectious replicative form known as a reticulate body (RB). RBs divide by binary fission and at the end of the cycle they redifferentiate into EBs. Treatment of C.trachomatis with penicillin prevents maturation of RBs which survive and enlarge to become aberrant RBs within the inclusion in a non - infective persistent state. Persistently infected individuals may be a reservoir for chlamydial infection. The C.trachomatis genome encodes the enzymes for peptidoglycan (PG) biosynthesis but a PG sacculus has never been detected. This coupled to the action of penicillin is known as the chlamydial anomaly. We have applied video microscopy and quantitative DNA assays to the chlamydial developmental cycle to assess the effects of penicillin treatment and establish a framework for investigating penicillin induced chlamydial persistence. Principal Findings: Addition of penicillin at the time of cell infection does not prevent uptake and the establishment of an inclusion. EB to RB transition occurs but bacterial cytokinesis is arrested by the second binary fission. RBs continue to enlarge but not divide in the presence of penicillin. The normal developmental cycle can be recovered by the removal of penicillin although the large, aberrant RBs do not revert to the normal smaller size but remain present to the completion of the developmental cycle. Chromosomal and plasmid DNA replication is unaffected by the addition of penicillin but the arrest of bacterial cytokinesis under these conditions results in RBs accumulating multiple copies of the genome. Conclusions: We have applied video time lapse microscopy to the study of the chlamydial developmental cycle. Linked with accurate measures of genome replication this provides a defined framework to analyse the developmental cycle and to investigate and provide new insights into the effects of antibiotic treatments. Removal of penicillin allows recovery of the normal developmental cycle by 10–20 hrs and the process occurs by budding from aberrant RBs.

Details

Language :
English
ISSN :
19326203
Volume :
4
Issue :
11
Database :
OpenAIRE
Journal :
PLoS ONE
Accession number :
edsair.doi.dedup.....2a8e2494009aedca8ab7c4847a9bd9c2