Back to Search
Start Over
Dissipation of sulfamethoxazole and trimethoprim during temporary storage of biosolids: A microcosm study
- Source :
- Chemosphere. 269
- Publication Year :
- 2020
-
Abstract
- Little is known about the dissipation rate of microcontaminants in biosolids during storage and stabilization in stockpiles (unsaturated) or storage lagoons/tanks (saturated). The objective of this study was to characterize the dissipation in biosolids of two antibiotics, sulfamethoxazole (SMX) and trimethoprim (TMP), in microcosms under saturated and unsaturated conditions that simulate biosolids that are stockpiled on land or deposited in lagoons/tanks, respectively. The laboratory experiment was conducted at 22 °C using biosolids spiked at an initial nominal concentration of 10 mg kg−1 for both antibiotics. Biosolids were sampled in triplicate at seven sampling times over a 42-d period. Concentrations of SMX and TMP in extracts prepared from biosolids were quantified using liquid chromatography with tandem mass spectrometry. Dissipation data fitted to a first-order kinetic model indicated that the time to 50% dissipation (DT50) for SMX was significantly shorter in the unsaturated microcosms (2.8 d) than the saturated microcosms (4.4 d), while the DT50 for TMP was significantly shorter in microcosms under saturated conditions (10 d) relative to unsaturated conditions (116 d). These results indicate that the reducing conditions that develop in biosolids deposited in lagoons or placed in storage tanks might be effective for enhancing the microbial degradation of antibiotics that are otherwise persistent under aerobic conditions (i.e., TMP), while also being effective for removing other antibiotics including those that dissipate relatively readily under aerobic conditions (i.e., SMX).
- Subjects :
- Environmental Engineering
Biosolids
Sulfamethoxazole
Health, Toxicology and Mutagenesis
0208 environmental biotechnology
02 engineering and technology
010501 environmental sciences
urologic and male genital diseases
01 natural sciences
Trimethoprim
Tandem Mass Spectrometry
medicine
Environmental Chemistry
Microbial biodegradation
0105 earth and related environmental sciences
Temporary storage
Chemistry
Public Health, Environmental and Occupational Health
General Medicine
General Chemistry
Biodegradation
bacterial infections and mycoses
Pollution
020801 environmental engineering
Anti-Bacterial Agents
Environmental chemistry
Laboratory experiment
Microcosm
medicine.drug
Subjects
Details
- ISSN :
- 18791298
- Volume :
- 269
- Database :
- OpenAIRE
- Journal :
- Chemosphere
- Accession number :
- edsair.doi.dedup.....2aad788abbdedc3c017ea12d5af9408c