Back to Search Start Over

Serial crystallography captures dynamic control of sequential electron and proton transfer events in a flavoenzyme

Authors :
Manuel Maestre-Reyna
Cheng-Han Yang
Eriko Nango
Wei-Cheng Huang
Eka Putra Gusti Ngurah Putu
Wen-Jin Wu
Po-Hsun Wang
Sophie Franz-Badur
Martin Saft
Hans-Joachim Emmerich
Hsiang-Yi Wu
Cheng-Chung Lee
Kai-Fa Huang
Yao-Kai Chang
Jiahn-Haur Liao
Jui-Hung Weng
Wael Gad
Chiung-Wen Chang
Allan H. Pang
Michihiro Sugahara
Shigeki Owada
Yuhei Hosokawa
Yasumasa Joti
Ayumi Yamashita
Rie Tanaka
Tomoyuki Tanaka
Fangjia Luo
Kensuke Tono
Kai-Cheng Hsu
Stephan Kiontke
Igor Schapiro
Roberta Spadaccini
Antoine Royant
Junpei Yamamoto
So Iwata
Lars-Oliver Essen
Yoshitaka Bessho
Ming-Daw Tsai
Academia Sinica
RIKEN - Institute of Physical and Chemical Research [Japon] (RIKEN)
Philipps Universität Marburg = Philipps University of Marburg
Thin Film Technology Center
National Central University [Taiwan] (NCU)
Japan Synchrotron Radiation Research Institute [Hyogo] (JASRI)
Graduate School of Engineering Science [Toyonaka, Osaka]
Osaka University
Taipei Medical University
The Fritz Haber Research Center for Molecular Dynamics [Jerusalem]
The Hebrew University of Jerusalem (HUJ)
Università degli Studi del Sannio
Institut de biologie structurale (IBS - UMR 5075)
Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche Interdisciplinaire de Grenoble (IRIG)
Direction de Recherche Fondamentale (CEA) (DRF (CEA))
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA))
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes (UGA)
European Synchroton Radiation Facility [Grenoble] (ESRF)
RIKEN SPring-8 Center [Hyogo] (RIKEN RSC)
National Taiwan University [Taiwan] (NTU)
ANR-17-EURE-0003,CBH-EUR-GS,CBH-EUR-GS(2017)
Source :
Nature Chemistry, Nature Chemistry, 2022, 14 (6), pp.677-685. ⟨10.1038/s41557-022-00922-3⟩
Publication Year :
2022
Publisher :
HAL CCSD, 2022.

Abstract

International audience; Flavin coenzymes are universally found in biological redox reactions. DNA photolyases, with their flavin chromophore (FAD), utilize blue light for DNA repair and photoreduction. The latter process involves two single-electron transfers to FAD with an intermittent protonation step to prime the enzyme active for DNA repair. Here we use time-resolved serial femtosecond X-ray crystallography to describe how light-driven electron transfers trigger subsequent nanosecond-to-microsecond entanglement between FAD and its Asn/Arg-Asp redox sensor triad. We found that this key feature within the photolyase-cryptochrome family regulates FAD re-hybridization and protonation. After first electron transfer, the FAD•- isoalloxazine ring twists strongly when the arginine closes in to stabilize the negative charge. Subsequent breakage of the arginine-aspartate salt bridge allows proton transfer from arginine to FAD•-. Our molecular videos demonstrate how the protein environment of redox cofactors organizes multiple electron/proton transfer events in an ordered fashion, which could be applicable to other redox systems such as photosynthesis.

Details

Language :
English
ISSN :
17554330
Database :
OpenAIRE
Journal :
Nature Chemistry, Nature Chemistry, 2022, 14 (6), pp.677-685. ⟨10.1038/s41557-022-00922-3⟩
Accession number :
edsair.doi.dedup.....2ab1ccc473a4c1aff447bbd9403e54d0
Full Text :
https://doi.org/10.1038/s41557-022-00922-3⟩